FunASR/funasr/bin/inference.py
2023-12-19 22:53:18 +08:00

179 lines
5.9 KiB
Python

import os.path
import torch
import numpy as np
import hydra
import json
from omegaconf import DictConfig, OmegaConf
import logging
from funasr.download.download_from_hub import download_model
from funasr.train_utils.set_all_random_seed import set_all_random_seed
from funasr.datasets.audio_datasets.load_audio_extract_fbank import load_bytes
from funasr.train_utils.device_funcs import to_device
from tqdm import tqdm
from funasr.train_utils.load_pretrained_model import load_pretrained_model
import time
import random
import string
from funasr.utils.register import registry_tables
def build_iter_for_infer(data_in, input_len=None, data_type="sound"):
"""
:param input:
:param input_len:
:param data_type:
:param frontend:
:return:
"""
data_list = []
key_list = []
filelist = [".scp", ".txt", ".json", ".jsonl"]
chars = string.ascii_letters + string.digits
if isinstance(data_in, str) and os.path.exists(data_in): # wav_path; filelist: wav.scp, file.jsonl;text.txt;
_, file_extension = os.path.splitext(data_in)
file_extension = file_extension.lower()
if file_extension in filelist: #filelist: wav.scp, file.jsonl;text.txt;
with open(data_in, encoding='utf-8') as fin:
for line in fin:
key = "rand_key_" + ''.join(random.choice(chars) for _ in range(13))
if data_in.endswith(".jsonl"): #file.jsonl: json.dumps({"source": data})
lines = json.loads(line.strip())
data = lines["source"]
key = data["key"] if "key" in data else key
else: # filelist, wav.scp, text.txt: id \t data or data
lines = line.strip().split()
data = lines[1] if len(lines)>1 else lines[0]
key = lines[0] if len(lines)>1 else key
data_list.append(data)
key_list.append(key)
else:
key = "rand_key_" + ''.join(random.choice(chars) for _ in range(13))
data_list = [data_in]
key_list = [key]
elif isinstance(data_in, (list, tuple)): # [audio sample point, fbank]
data_list = data_in
key_list = ["rand_key_" + ''.join(random.choice(chars) for _ in range(13)) for _ in range(len(data_in))]
else: # raw text; audio sample point, fbank; bytes
if isinstance(data_in, bytes): # audio bytes
data_in = load_bytes(data_in)
key = "rand_key_" + ''.join(random.choice(chars) for _ in range(13))
data_list = [data_in]
key_list = [key]
return key_list, data_list
@hydra.main(config_name=None, version_base=None)
def main_hydra(kwargs: DictConfig):
log_level = getattr(logging, kwargs.get("log_level", "INFO").upper())
logging.basicConfig(level=log_level)
import pdb;
pdb.set_trace()
model = AutoModel(**kwargs)
res = model.generate(input=kwargs["input"])
print(res)
class AutoModel:
def __init__(self, **kwargs):
registry_tables.print()
assert "model" in kwargs
if "model_conf" not in kwargs:
logging.info("download models from model hub: {}".format(kwargs.get("model_hub", "ms")))
kwargs = download_model(**kwargs)
set_all_random_seed(kwargs.get("seed", 0))
device = kwargs.get("device", "cuda")
if not torch.cuda.is_available() or kwargs.get("ngpu", 1):
device = "cpu"
kwargs["batch_size"] = 1
kwargs["device"] = device
# build tokenizer
tokenizer = kwargs.get("tokenizer", None)
if tokenizer is not None:
tokenizer_class = registry_tables.tokenizer_classes.get(tokenizer.lower())
tokenizer = tokenizer_class(**kwargs["tokenizer_conf"])
kwargs["tokenizer"] = tokenizer
# build frontend
frontend = kwargs.get("frontend", None)
if frontend is not None:
frontend_class = registry_tables.frontend_classes.get(frontend.lower())
frontend = frontend_class(**kwargs["frontend_conf"])
kwargs["frontend"] = frontend
kwargs["input_size"] = frontend.output_size()
# build model
model_class = registry_tables.model_classes.get(kwargs["model"].lower())
model = model_class(**kwargs, **kwargs["model_conf"], vocab_size=len(tokenizer.token_list))
model.eval()
model.to(device)
kwargs["token_list"] = tokenizer.token_list
# init_param
init_param = kwargs.get("init_param", None)
if init_param is not None:
logging.info(f"Loading pretrained params from {init_param}")
load_pretrained_model(
model=model,
init_param=init_param,
ignore_init_mismatch=kwargs.get("ignore_init_mismatch", False),
oss_bucket=kwargs.get("oss_bucket", None),
)
self.kwargs = kwargs
self.model = model
self.tokenizer = tokenizer
def generate(self, input, input_len=None, **cfg):
self.kwargs.update(cfg)
data_type = self.kwargs.get("data_type", "sound")
batch_size = self.kwargs.get("batch_size", 1)
if self.kwargs.get("device", "cpu") == "cpu":
batch_size = 1
key_list, data_list = build_iter_for_infer(input, input_len=input_len, data_type=data_type)
speed_stats = {}
asr_result_list = []
num_samples = len(data_list)
pbar = tqdm(colour="blue", total=num_samples, dynamic_ncols=True)
for beg_idx in range(0, num_samples, batch_size):
end_idx = min(num_samples, beg_idx + batch_size)
data_batch = data_list[beg_idx:end_idx]
key_batch = key_list[beg_idx:end_idx]
batch = {"data_in": data_batch, "key": key_batch}
if (end_idx - beg_idx) == 1 and isinstance(data_batch[0], torch.Tensor): # fbank
batch["data_batch"] = data_batch[0]
batch["data_lengths"] = input_len
time1 = time.perf_counter()
results, meta_data = self.model.generate(**batch, **self.kwargs)
time2 = time.perf_counter()
asr_result_list.append(results)
pbar.update(1)
# batch_data_time = time_per_frame_s * data_batch_i["speech_lengths"].sum().item()
batch_data_time = meta_data.get("batch_data_time", -1)
speed_stats["load_data"] = meta_data.get("load_data", 0.0)
speed_stats["extract_feat"] = meta_data.get("extract_feat", 0.0)
speed_stats["forward"] = f"{time2 - time1:0.3f}"
speed_stats["rtf"] = f"{(time2 - time1) / batch_data_time:0.3f}"
description = (
f"{speed_stats}, "
)
pbar.set_description(description)
torch.cuda.empty_cache()
return asr_result_list
if __name__ == '__main__':
main_hydra()