import torch import copy import logging import numpy as np from typing import Any, List, Tuple, Union def ts_prediction_lfr6_standard(us_alphas, us_peaks, char_list, vad_offset=0.0, force_time_shift=-1.5 ): if not len(char_list): return [] START_END_THRESHOLD = 5 MAX_TOKEN_DURATION = 12 TIME_RATE = 10.0 * 6 / 1000 / 3 # 3 times upsampled if len(us_alphas.shape) == 2: _, peaks = us_alphas[0], us_peaks[0] # support inference batch_size=1 only else: _, peaks = us_alphas, us_peaks num_frames = peaks.shape[0] if char_list[-1] == '': char_list = char_list[:-1] timestamp_list = [] new_char_list = [] # for bicif model trained with large data, cif2 actually fires when a character starts # so treat the frames between two peaks as the duration of the former token fire_place = torch.where(peaks>1.0-1e-4)[0].cpu().numpy() + force_time_shift # total offset num_peak = len(fire_place) assert num_peak == len(char_list) + 1 # number of peaks is supposed to be number of tokens + 1 # begin silence if fire_place[0] > START_END_THRESHOLD: # char_list.insert(0, '') timestamp_list.append([0.0, fire_place[0]*TIME_RATE]) new_char_list.append('') # tokens timestamp for i in range(len(fire_place)-1): new_char_list.append(char_list[i]) if MAX_TOKEN_DURATION < 0 or fire_place[i+1] - fire_place[i] <= MAX_TOKEN_DURATION: timestamp_list.append([fire_place[i]*TIME_RATE, fire_place[i+1]*TIME_RATE]) else: # cut the duration to token and sil of the 0-weight frames last long _split = fire_place[i] + MAX_TOKEN_DURATION timestamp_list.append([fire_place[i]*TIME_RATE, _split*TIME_RATE]) timestamp_list.append([_split*TIME_RATE, fire_place[i+1]*TIME_RATE]) new_char_list.append('') # tail token and end silence # new_char_list.append(char_list[-1]) if num_frames - fire_place[-1] > START_END_THRESHOLD: _end = (num_frames + fire_place[-1]) * 0.5 # _end = fire_place[-1] timestamp_list[-1][1] = _end*TIME_RATE timestamp_list.append([_end*TIME_RATE, num_frames*TIME_RATE]) new_char_list.append("") else: timestamp_list[-1][1] = num_frames*TIME_RATE if vad_offset: # add offset time in model with vad for i in range(len(timestamp_list)): timestamp_list[i][0] = timestamp_list[i][0] + vad_offset / 1000.0 timestamp_list[i][1] = timestamp_list[i][1] + vad_offset / 1000.0 res_txt = "" for char, timestamp in zip(new_char_list, timestamp_list): res_txt += "{} {} {};".format(char, str(timestamp[0]+0.0005)[:5], str(timestamp[1]+0.0005)[:5]) res = [] for char, timestamp in zip(new_char_list, timestamp_list): if char != '': res.append([int(timestamp[0] * 1000), int(timestamp[1] * 1000)]) return res_txt, res def time_stamp_sentence(punc_id_list, time_stamp_postprocessed, text_postprocessed): res = [] if text_postprocessed is None: return res if time_stamp_postprocessed is None: return res if len(time_stamp_postprocessed) == 0: return res if len(text_postprocessed) == 0: return res if punc_id_list is None or len(punc_id_list) == 0: res.append({ 'text': text_postprocessed.split(), "start": time_stamp_postprocessed[0][0], "end": time_stamp_postprocessed[-1][1] }) return res if len(punc_id_list) != len(time_stamp_postprocessed): res.append({ 'text': text_postprocessed.split(), "start": time_stamp_postprocessed[0][0], "end": time_stamp_postprocessed[-1][1] }) return res sentence_text = '' sentence_start = time_stamp_postprocessed[0][0] texts = text_postprocessed.split() for i in range(len(punc_id_list)): sentence_text += texts[i] if punc_id_list[i] == 2: sentence_text += ',' res.append({ 'text': sentence_text, "start": sentence_start, "end": time_stamp_postprocessed[i][1] }) sentence_text = '' sentence_start = time_stamp_postprocessed[i][1] elif punc_id_list[i] == 3: sentence_text += '.' res.append({ 'text': sentence_text, "start": sentence_start, "end": time_stamp_postprocessed[i][1] }) sentence_text = '' sentence_start = time_stamp_postprocessed[i][1] return res