from funasr_torch import Paraformer #model_dir = "/Users/shixian/code/funasr/export/damo/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch" model_dir = "/Users/shixian/code/funasr/export/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch" model = Paraformer(model_dir, batch_size=2) # when using paraformer-tiny-commandword_asr_nat-zh-cn-16k-vocab544-pytorch, you should set pred_bias=0 # plot_timestamp_to works only when using speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch # model_dir = "/Users/shixian/code/funasr/export/damo/speech_paraformer-tiny-commandword_asr_nat-zh-cn-16k-vocab544-pytorch" # model = Paraformer(model_dir, batch_size=2, pred_bias=0) # when using paraformer-large-vad-punc model, you can set plot_timestamp_to="./xx.png" to get figure of alignment besides timestamps # model_dir = "/Users/shixian/code/funasr/export/damo/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch" # model = Paraformer(model_dir, batch_size=1) # model = Paraformer(model_dir, batch_size=1, plot_timestamp_to="test.png") wav_path = "YourPath/xx.wav" result = model(wav_path) print(result)