import logging from typing import Union, Dict, List, Tuple, Optional import time import torch import torch.nn as nn import torch.nn.functional as F from torch.cuda.amp import autocast import re from funasr.models.scama.utils import sequence_mask from funasr.losses.label_smoothing_loss import LabelSmoothingLoss from funasr.models.ctc.ctc import CTC from funasr.models.transformer.utils.add_sos_eos import add_sos_eos from funasr.metrics.compute_acc import th_accuracy, compute_accuracy from funasr.metrics.common import ErrorCalculator from funasr.train_utils.device_funcs import force_gatherable from funasr.utils.load_utils import load_audio_text_image_video, extract_fbank from funasr.utils import postprocess_utils from funasr.utils.datadir_writer import DatadirWriter from funasr.register import tables from funasr.train_utils.device_funcs import to_device import traceback dtype_map = {"bf16": torch.bfloat16, "fp16": torch.float16, "fp32": torch.float32} @tables.register("model_classes", "LLMASR") class LLMASR(nn.Module): """ """ def __init__( self, specaug: str = None, specaug_conf: dict = None, normalize: str = None, normalize_conf: dict = None, audio_encoder: str = None, audio_encoder_conf: dict = None, audio_adaptor: str = None, audio_adaptor_conf: dict = None, decoder: str = None, decoder_conf: dict = None, ctc: str = None, ctc_conf: dict = None, ctc_weight: float = 0.5, llm: str = None, llm_conf: dict = None, input_size: int = 80, vocab_size: int = -1, ignore_id: int = -1, blank_id: int = 0, sos: int = 1, eos: int = 2, lsm_weight: float = 0.0, length_normalized_loss: bool = False, report_cer: bool = True, report_wer: bool = True, sym_space: str = "", sym_blank: str = "", # extract_feats_in_collect_stats: bool = True, share_embedding: bool = False, # preencoder: Optional[AbsPreEncoder] = None, # postencoder: Optional[AbsPostEncoder] = None, **kwargs, ): super().__init__() if specaug is not None: specaug_class = tables.specaug_classes.get(specaug) specaug = specaug_class(**specaug_conf) if normalize is not None: normalize_class = tables.normalize_classes.get(normalize) normalize = normalize_class(**normalize_conf) # audio encoder hub = audio_encoder_conf.get("hub", None) if hub == "ms": from funasr import AutoModel model = AutoModel(model=audio_encoder, model_revision="master") # frontend = model.kwargs.get("frontend") audio_encoder_output_size = model.model.encoder_output_size audio_encoder = model.model.model.encoder # self.frontend = frontend elif hub == "hf": pass else: encoder_class = tables.encoder_classes.get(audio_encoder) audio_encoder = encoder_class(input_size=input_size, **audio_encoder_conf) audio_encoder_output_size = audio_encoder.output_size() freeze = audio_encoder_conf.get("freeze", True) if freeze: for name, param in audio_encoder.named_parameters(): param.requires_grad = False audio_encoder.eval() self.audio_encoder = audio_encoder # llm hub = llm_conf.get("hub", "hf") self.llm = None if hub == "hf": from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig init_param_path = llm_conf.get("init_param_path", "vicuna-7b-v1.5") model = AutoModelForCausalLM.from_pretrained( init_param_path, load_in_8bit=None, device_map=None, use_cache=None, ) freeze = llm_conf.get("freeze", True) if freeze: for name, param in model.named_parameters(): param.requires_grad = False model.eval() self.llm = model # adaptor adaptor_class = tables.adaptor_classes.get(audio_adaptor) audio_adaptor_conf["encoder_dim"] = audio_encoder_output_size audio_adaptor = adaptor_class(**audio_adaptor_conf) self.audio_adaptor = audio_adaptor self.blank_id = blank_id self.sos = sos if sos is not None else vocab_size - 1 self.eos = eos if eos is not None else vocab_size - 1 self.vocab_size = vocab_size self.ignore_id = ignore_id self.specaug = specaug self.normalize = normalize self.criterion_att = LabelSmoothingLoss( size=vocab_size, padding_idx=ignore_id, smoothing=lsm_weight, normalize_length=length_normalized_loss, ) self.error_calculator = None self.length_normalized_loss = length_normalized_loss self.beam_search = None def forward( self, speech: torch.Tensor, speech_lengths: torch.Tensor, text: torch.Tensor, text_lengths: torch.Tensor, input_ids: torch.Tensor, attention_mask: torch.Tensor, labels_ids: torch.Tensor, label_mask: torch.Tensor, audio_mask: torch.Tensor, **kwargs, ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]: """Encoder + Decoder + Calc loss Args: speech: (Batch, Length, ...) speech_lengths: (Batch, ) text: (Batch, Length) text_lengths: (Batch,) """ if len(text_lengths.size()) > 1: text_lengths = text_lengths[:, 0] if len(speech_lengths.size()) > 1: speech_lengths = speech_lengths[:, 0] batch_size = speech.shape[0] # audio encoder encoder_out, encoder_out_lens = self.encode(speech, speech_lengths) # audio_adaptor encoder_out = self.audio_adaptor(encoder_out) input_ids[input_ids == -1] = 0 input_ids[input_ids == -100] = 0 if hasattr(self.llm.model, "embed_tokens"): inputs_embeds = self.llm.model.embed_tokens(input_ids) elif hasattr(self.llm.model.model, "embed_tokens"): inputs_embeds = self.llm.model.model.embed_tokens(input_ids) else: inputs_embeds = self.llm.model.model.model.embed_tokens(input_ids) if audio_mask is not None: batch_size, token_num, dims = inputs_embeds.shape _, l, _ = encoder_out.shape # [audio, bos, prompt, input, pad] encoder_outs_pad = F.pad(encoder_out, (0, 0, 0, token_num - l, 0, 0), value=0.0) inputs_embeds = encoder_outs_pad * audio_mask[:, :, None] + inputs_embeds * ( 1.0 - audio_mask[:, :, None] ) model_outputs = self.llm( inputs_embeds=inputs_embeds, attention_mask=attention_mask, labels=labels_ids ) loss = model_outputs.loss stats = {} with torch.no_grad(): preds = torch.argmax(model_outputs.logits, -1) acc_att = compute_accuracy(preds[:, :-1], labels_ids[:, 1:], ignore_label=-100) stats["acc"] = acc_att stats["loss"] = torch.clone(loss.detach()) # force_gatherable: to-device and to-tensor if scalar for DataParallel if self.length_normalized_loss: batch_size = int((text_lengths + 1).sum()) loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device) return loss, stats, weight def encode( self, speech: torch.Tensor, speech_lengths: torch.Tensor, **kwargs, ): speech = speech.permute(0, 2, 1) res = self.audio_encoder(speech) if isinstance(res, (list, tuple)): encoder_out, encoder_out_lens = res[0], res[1] else: encoder_out, encoder_out_lens = res, speech_lengths return encoder_out, encoder_out_lens def inference( self, data_in, data_lengths=None, key: list = None, tokenizer=None, frontend=None, **kwargs, ): prompt = kwargs.get("prompt", "Transcribe speech to text.") if kwargs.get("batch_size", 1) > 1: raise NotImplementedError("batch decoding is not implemented") meta_data = {} if ( isinstance(data_in, torch.Tensor) and kwargs.get("data_type", "sound") == "fbank" ): # fbank speech, speech_lengths = data_in, data_lengths if len(speech.shape) < 3: speech = speech[None, :, :] if speech_lengths is None: speech_lengths = speech.shape[1] else: # extract fbank feats time1 = time.perf_counter() audio_sample_list = load_audio_text_image_video( data_in, fs=frontend.fs, audio_fs=kwargs.get("fs", 16000), data_type=kwargs.get("data_type", "sound"), tokenizer=tokenizer, ) time2 = time.perf_counter() meta_data["load_data"] = f"{time2 - time1:0.3f}" speech, speech_lengths = extract_fbank( audio_sample_list, data_type=kwargs.get("data_type", "sound"), frontend=frontend ) time3 = time.perf_counter() meta_data["extract_feat"] = f"{time3 - time2:0.3f}" meta_data["batch_data_time"] = ( speech_lengths.sum().item() * frontend.frame_shift * frontend.lfr_n / 1000 ) speech = speech.to(device=kwargs["device"]) speech_lengths = speech_lengths.to(device=kwargs["device"]) # Encoder encoder_out, encoder_out_lens = self.encode(speech, speech_lengths) # adaptor encoder_out = self.audio_adaptor(encoder_out) prompt_pre = "USER: \nINSTRUCTION: {}\nINPUT: ".format(prompt) prompt_ids = tokenizer.encode(prompt_pre) prompt_length = len(prompt_ids) prompt_ids = torch.tensor(prompt_ids, dtype=torch.int64).to(kwargs["device"]) if hasattr(self.llm.model, "embed_tokens"): inputs_embeds = self.llm.model.embed_tokens(prompt_ids) elif hasattr(self.llm.model.model, "embed_tokens"): inputs_embeds = self.llm.model.model.embed_tokens(prompt_ids) else: inputs_embeds = self.llm.model.model.model.embed_tokens(prompt_ids) inputs_embeds = torch.cat( (inputs_embeds[None, :, :], encoder_out), dim=1 ) # [prompt, audio] attention_mask = torch.ones(inputs_embeds.size()[:-1], dtype=torch.long).to( kwargs["device"] ) preds = self.llm.generate( inputs_embeds=inputs_embeds, max_length=kwargs.get("max_length", 200), max_new_tokens=kwargs.get("max_new_tokens", 200), num_beams=kwargs.get("num_beams", 4), do_sample=kwargs.get("do_sample", False), min_length=kwargs.get("min_length", 1), top_p=kwargs.get("top_p", 1.0), repetition_penalty=kwargs.get("repetition_penalty", 1.0), length_penalty=kwargs.get("length_penalty", 1.0), temperature=kwargs.get("temperature", 1.0), attention_mask=attention_mask, bos_token_id=tokenizer.bos_token_id, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id, ) text = tokenizer.batch_decode(preds, add_special_tokens=False, skip_special_tokens=True) text = text[0].split(": ")[-1] text = text.strip() # preds = torch.argmax(model_outputs.logits, -1) ibest_writer = None if kwargs.get("output_dir") is not None: if not hasattr(self, "writer"): self.writer = DatadirWriter(kwargs.get("output_dir")) ibest_writer = self.writer[f"{0 + 1}best_recog"] results = [] result_i = {"key": key[0], "text": text} results.append(result_i) if ibest_writer is not None: ibest_writer["text"][key[0]] = text return results, meta_data @tables.register("model_classes", "LLMASR2") class LLMASR2(nn.Module): """ """ def __init__( self, specaug: str = None, specaug_conf: dict = None, normalize: str = None, normalize_conf: dict = None, audio_encoder: str = None, audio_encoder_conf: dict = None, audio_adaptor: str = None, audio_adaptor_conf: dict = None, decoder: str = None, decoder_conf: dict = None, ctc: str = None, ctc_conf: dict = None, ctc_weight: float = 0.5, llm: str = None, llm_conf: dict = None, input_size: int = 80, vocab_size: int = -1, ignore_id: int = -1, blank_id: int = 0, sos: int = 1, eos: int = 2, lsm_weight: float = 0.0, length_normalized_loss: bool = False, report_cer: bool = True, report_wer: bool = True, sym_space: str = "", sym_blank: str = "", # extract_feats_in_collect_stats: bool = True, share_embedding: bool = False, # preencoder: Optional[AbsPreEncoder] = None, # postencoder: Optional[AbsPostEncoder] = None, **kwargs, ): super().__init__() # audio encoder hub = audio_encoder_conf.get("hub", None) if hub == "ms": from funasr import AutoModel model = AutoModel(model=audio_encoder, model_revision="master") # frontend = model.kwargs.get("frontend") audio_encoder_output_size = model.model.encoder_output_size audio_encoder = ( model.model.model.encoder if hasattr(model.model, "model") else model.model.encoder ) # self.frontend = frontend elif hub == "hf": pass else: encoder_class = tables.encoder_classes.get(audio_encoder) audio_encoder = encoder_class(input_size=input_size, **audio_encoder_conf) audio_encoder_output_size = audio_encoder.output_size() freeze = audio_encoder_conf.get("freeze", True) freeze_layer_num = int(audio_encoder_conf.get("freeze_layer_num", -1)) # if freeze_layer_num > 0: # freeze_layer_num = range(freeze_layer_num) if freeze: for name, param in audio_encoder.named_parameters(): if freeze_layer_num > 0: idx = re.search(r"\.\d+\.", name) if idx is not None: beg, end = idx.regs[0] layer_id = int(name[beg + 1 : end - 1]) if layer_id < freeze_layer_num: param.requires_grad = False elif "ln_post." not in name: param.requires_grad = False else: param.requires_grad = False audio_encoder.eval() self.audio_encoder = audio_encoder # llm self.llm = None from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig init_param_path = llm_conf.get("init_param_path", "vicuna-7b-v1.5") model = AutoModelForCausalLM.from_pretrained( init_param_path, load_in_8bit=None, device_map=None, use_cache=None, ) freeze = llm_conf.get("freeze", True) if freeze: for name, param in model.named_parameters(): param.requires_grad = False model.eval() self.llm_dtype = llm_conf.get("llm_dtype", "fp32") self.llm = model.to(dtype_map[self.llm_dtype]) llm_dim = model.get_input_embeddings().weight.shape[-1] # adaptor adaptor_class = tables.adaptor_classes.get(audio_adaptor) audio_adaptor_conf["encoder_dim"] = audio_encoder_output_size audio_adaptor_conf["llm_dim"] = llm_dim audio_adaptor = adaptor_class(**audio_adaptor_conf) init_param_path = audio_adaptor_conf.get("init_param_path", None) if init_param_path is not None: src_state = torch.load(init_param_path, map_location="cpu") flag = audio_adaptor.load_state_dict(src_state, strict=False) logging.info(f"Loading audio_adaptor ckpt: {init_param_path}, status: {flag}") self.audio_adaptor = audio_adaptor self.error_calculator = None self.length_normalized_loss = length_normalized_loss self.beam_search = None def forward( self, speech: torch.Tensor, speech_lengths: torch.Tensor, input_ids: torch.Tensor, attention_mask: torch.Tensor, labels_ids: torch.Tensor, fbank_beg: torch.Tensor, fbank_mask: torch.Tensor, **kwargs, ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]: """Encoder + Decoder + Calc loss Args: speech: (Batch, Length, ...) speech_lengths: (Batch, ) text: (Batch, Length) text_lengths: (Batch,) """ # import pdb; # pdb.set_trace() if len(speech_lengths.size()) > 1: speech_lengths = speech_lengths[:, 0] batch_size, frames, _ = speech.shape with torch.cuda.amp.autocast(enabled=False): # audio encoder encoder_out, encoder_out_lens = self.encode(speech, speech_lengths) # audio_adaptor encoder_out, encoder_out_lens = self.audio_adaptor(encoder_out, encoder_out_lens) input_ids[input_ids < 0] = 0 inputs_embeds = self.llm.model.get_input_embeddings()(input_ids) batch_size, token_num, dims = inputs_embeds.shape fbank_mask[fbank_mask < 0] = 0 fbank_fake_lens = fbank_mask.sum(-1).to(torch.int32) # _, l, _ = encoder_out.shape for batch_idx in range(batch_size): fbank_fake_len = fbank_fake_lens[batch_idx].item() fbank_beg_idx = fbank_beg[batch_idx, 0].item() min_len = min(fbank_fake_len, inputs_embeds.shape[1] - fbank_beg_idx) try: inputs_embeds[batch_idx, fbank_beg_idx : fbank_beg_idx + min_len, :] = encoder_out[ batch_idx, :min_len, : ] except Exception as e: logging.error(f"{str(e)}, {traceback.format_exc()}") logging.info( f"batch_idx: {batch_idx}, inputs_embeds: {inputs_embeds.shape}, fbank_beg_idx: {fbank_beg_idx}, min_len: {min_len}, fbank_fake_len: {fbank_fake_len}, encoder_out: {encoder_out.shape}, encoder_out_lens: {encoder_out_lens[batch_idx].item()}" ) fbank_fake_len = encoder_out_lens[batch_idx].item() min_len = min(fbank_fake_len, min_len) inputs_embeds[batch_idx, fbank_beg_idx : fbank_beg_idx + min_len, :] = encoder_out[ batch_idx, :min_len, : ] with torch.cuda.amp.autocast( enabled=True if self.llm_dtype != "fp32" else False, dtype=dtype_map[self.llm_dtype] ): labels_ids[labels_ids == -1] = -100 attention_mask[attention_mask < 0] = 0 model_outputs = self.llm( inputs_embeds=inputs_embeds.to(dtype_map[self.llm_dtype]), attention_mask=attention_mask, labels=labels_ids, ) loss = model_outputs.loss stats = {} with torch.no_grad(): preds = torch.argmax(model_outputs.logits, -1) acc_att = compute_accuracy(preds[:, :-1], labels_ids[:, 1:], ignore_label=-100) stats["acc"] = acc_att stats["loss"] = torch.clone(loss.detach()) stats["batch_size"] = batch_size stats["batch_size_x_frames"] = frames * batch_size stats["batch_size_real_frames"] = speech_lengths.sum().item() stats["padding_frames"] = stats["batch_size_x_frames"] - stats["batch_size_real_frames"] stats["batch_size_x_tokens"] = token_num * batch_size stats["batch_size_real_tokens"] = attention_mask.sum().item() stats["padding_tokens"] = stats["batch_size_x_tokens"] - stats["batch_size_real_tokens"] # force_gatherable: to-device and to-tensor if scalar for DataParallel if self.length_normalized_loss: batch_size = int((labels_ids > 0 + 1).sum()) loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device) return loss, stats, weight def encode(self, speech, speech_lengths): # audio encoder encoder_out, encoder_out_lens = self.audio_encoder(speech.permute(0, 2, 1), speech_lengths) return encoder_out, encoder_out_lens def data_template(self, data): system, user, assistant = [], [], [] for i, item in enumerate(data): role = item["role"] content = item["content"] if role == "system": system.append(content) elif role == "user": user.append(content) elif role == "assistant": assistant.append(content) system = system * len(user) contents = { "system": system, "user": user, "assistant": assistant, } return contents def data_load_speech(self, contents: dict, tokenizer, frontend, meta_data={}, **kwargs): system = contents["system"] user = contents["user"] assistant = contents["assistant"] pattern = re.compile(r"(<\|startofspeech\|>.*?<\|endofspeech\|>)") input_ids, labels, source_ids, target_ids, fbank, fbank_lens, fbank_mask, fbank_beg = ( [], [], [], [], [], [], [], [], ) for i, (system_prompt, user_prompt, target_out) in enumerate(zip(system, user, assistant)): source_input = f"<|im_start|>system\n{system_prompt}<|im_end|>\n<|im_start|>user\n{user_prompt}<|im_end|>\n<|im_start|>assistant\n" splits = pattern.split(source_input) source_ids_i = [] fbank_mask_i = [] fbank_beg_i = [] fbank_lens_i = [] # target_ids_i = [] for k, sub_str in enumerate(splits): if not sub_str.startswith("<|startofspeech|>"): sub_token = tokenizer.encode(sub_str) source_ids_i += sub_token fbank_mask_i += [0] * len(sub_token) else: sub_str = sub_str.replace("<|startofspeech|>", "").replace( "<|endofspeech|>", "" ) if sub_str.startswith("!"): try: time1 = time.perf_counter() data_src = load_audio_text_image_video(sub_str[1:], fs=frontend.fs) time2 = time.perf_counter() meta_data["load_data"] = f"{time2 - time1:0.3f}" except Exception as e: logging.error(f"Loading wav failed! {str(e)}, {traceback.format_exc()}") speech, speech_lengths = extract_fbank( data_src, data_type=kwargs.get("data_type", "sound"), frontend=frontend, is_final=True, ) # speech: [b, T, d] time3 = time.perf_counter() meta_data["extract_feat"] = f"{time3 - time2:0.3f}" meta_data["batch_data_time"] = ( speech_lengths.sum().item() * frontend.frame_shift * frontend.lfr_n / 1000 ) if hasattr(frontend, "permute") and not frontend.permute: # if kwargs.get("permute", True): speech = speech.permute(0, 2, 1) if ( kwargs.get("dataset_conf", {}).get("audio_encoder_downsample_rate", 1) == 4 ): olens = 1 + (speech_lengths[0].item() - 3 + 2 * 1) // 2 olens = 1 + (olens - 3 + 2 * 1) // 2 elif ( kwargs.get("dataset_conf", {}).get("audio_encoder_downsample_rate", 1) == 1 ): olens = speech_lengths[0].item() sub_token_len = (olens - 1) // kwargs.get("dataset_conf", {}).get( "audio_adaptor_downsample_rate", 1 ) + 1 sub_token = [0] * sub_token_len fbank_beg_i = [len(source_ids_i)] source_ids_i += sub_token fbank_mask_i += [1] * len(sub_token) source_mask = [-100] * len(source_ids_i) target_out = f"{target_out}<|im_end|>" target_ids = tokenizer.encode(target_out) input_ids += source_ids_i + target_ids labels += source_mask + target_ids fbank_mask += fbank_mask_i fbank_beg.append(fbank_beg_i) input_ids = torch.tensor(input_ids, dtype=torch.int64) # [: self.max_token_length] attention_mask = torch.tensor([1] * len(input_ids), dtype=torch.int32) labels = torch.tensor(labels, dtype=torch.int64) # [: self.max_token_length] source_ids = torch.tensor(source_ids_i, dtype=torch.int64) target_ids = torch.tensor(target_ids, dtype=torch.int64) fbank = speech[0, :, :] fbank_lens = speech_lengths fbank_mask = torch.tensor(fbank_mask, dtype=torch.float32) fbank_beg = torch.tensor(fbank_beg, dtype=torch.int32) output = { "speech": fbank[None, :, :], "speech_lengths": fbank_lens[:, None], "fbank_mask": fbank_mask[None, :], "fbank_beg": fbank_beg[None,], "input_ids": input_ids[None, :], "attention_mask": attention_mask[None, :], "labels_ids": labels[None, :], "source_ids": source_ids[None, :], "target_ids": target_ids[None, :], } return output def inference( self, data_in, data_lengths=None, key: list = None, tokenizer=None, frontend=None, **kwargs, ): meta_data = {} prompt = kwargs.get("prompt", None) if kwargs.get("batch_size", 1) > 1: raise NotImplementedError("batch decoding is not implemented") contents = self.data_template(data_in[0]) output = self.data_load_speech(contents, tokenizer, frontend, meta_data=meta_data, **kwargs) batch = to_device(output, kwargs["device"]) # audio encoder speech = batch["speech"] speech_lengths = batch["speech_lengths"][:, 0] # fp16 if kwargs.get("fp16", False): speech = speech.to(torch.float16) elif kwargs.get("bf16", False): speech = speech.to(torch.bfloat16) # audio encoder encoder_out, encoder_out_lens = self.encode(speech, speech_lengths) # audio_adaptor encoder_out, encoder_out_lens = self.audio_adaptor(encoder_out, encoder_out_lens) input_ids = batch["input_ids"] source_ids = batch["source_ids"] if not kwargs.get("tearchforing", False): input_ids = source_ids input_ids[input_ids < 0] = 0 inputs_embeds = self.llm.model.get_input_embeddings()(input_ids) batch_size, token_num, dims = inputs_embeds.shape fbank_beg = batch["fbank_beg"] for batch_idx in range(batch_size): min_len = encoder_out_lens[batch_idx].item() fbank_beg_idx = fbank_beg[batch_idx] inputs_embeds[batch_idx, fbank_beg_idx : fbank_beg_idx + min_len, :] = encoder_out[ batch_idx, :min_len, : ] llm_dtype = kwargs.get("llm_dtype", "fp32") if llm_dtype == "fp32": llm_dtype = "fp16" if kwargs.get("fp16", False) else llm_dtype llm_dtype = "bf16" if kwargs.get("bf16", False) else llm_dtype with torch.cuda.amp.autocast( enabled=True if llm_dtype != "fp32" else False, dtype=dtype_map[llm_dtype] ): label = contents["assistant"][0] self.llm = self.llm.to(dtype_map[llm_dtype]) inputs_embeds = inputs_embeds.to(dtype_map[llm_dtype]) if not kwargs.get("tearchforing", False): generated_ids = self.llm.generate( inputs_embeds=inputs_embeds, max_new_tokens=kwargs.get("max_length", 512) ) # generated_ids = [ # output_ids[len(input_id) :] # for input_id, output_ids in zip(input_ids, generated_ids) # ] response = tokenizer.batch_decode( generated_ids, skip_special_tokens=kwargs.get("skip_special_tokens", True) )[0] loss = None else: labels_ids = batch["labels_ids"] labels_ids[labels_ids == -1] = -100 attention_mask = batch.get("attention_mask", None) # attention_mask = attention_mask.to(dtype_map[llm_dtype]) model_outputs = self.llm( inputs_embeds=inputs_embeds, attention_mask=attention_mask, labels=labels_ids ) preds = torch.argmax(model_outputs.logits, -1)[:, source_ids.shape[1] :] response = tokenizer.batch_decode( preds, add_special_tokens=False, skip_special_tokens=kwargs.get("skip_special_tokens", True), )[0] loss = model_outputs.loss.item() ibest_writer = None if kwargs.get("output_dir") is not None: if not hasattr(self, "writer"): self.writer = DatadirWriter(kwargs.get("output_dir")) ibest_writer = self.writer[f"{0 + 1}best_recog"] results = [] response_clean = re.sub(r"[^\w\s\u3000\u4e00-\u9fff]+", "", response) result_i = {"key": key[0], "text": response, "text_tn": response_clean, "label": label} if loss is not None: result_i["loss"] = loss results.append(result_i) if ibest_writer is not None: ibest_writer["text"][key[0]] = response ibest_writer["label"][key[0]] = label ibest_writer["text_tn"][key[0]] = response_clean return results, meta_data @tables.register("model_classes", "LLMASR3") class LLMASR3(LLMASR2): """ """ def __init__( self, *args, **kwargs, ): super().__init__(*args, **kwargs) def encode(self, speech, speech_lengths): # audio encoder encoder_out, encoder_out_lens = self.audio_encoder(speech, speech_lengths) return encoder_out, encoder_out_lens @tables.register("model_classes", "LLMASR4") class LLMASR4(nn.Module): """ """ def __init__( self, specaug: str = None, specaug_conf: dict = None, normalize: str = None, normalize_conf: dict = None, audio_encoder: str = None, audio_encoder_conf: dict = None, audio_adaptor: str = None, audio_adaptor_conf: dict = None, decoder: str = None, decoder_conf: dict = None, ctc: str = None, ctc_conf: dict = None, ctc_weight: float = 0.5, llm: str = None, llm_conf: dict = None, input_size: int = 80, vocab_size: int = -1, ignore_id: int = -1, blank_id: int = 0, sos: int = 1, eos: int = 2, lsm_weight: float = 0.0, length_normalized_loss: bool = False, report_cer: bool = True, report_wer: bool = True, sym_space: str = "", sym_blank: str = "", # extract_feats_in_collect_stats: bool = True, share_embedding: bool = False, # preencoder: Optional[AbsPreEncoder] = None, # postencoder: Optional[AbsPostEncoder] = None, **kwargs, ): super().__init__() # audio encoder hub = audio_encoder_conf.get("hub", None) if hub == "ms": from funasr import AutoModel model = AutoModel(model=audio_encoder, model_revision="master") # frontend = model.kwargs.get("frontend") audio_encoder_output_size = model.model.encoder_output_size audio_encoder = ( model.model.model.encoder if hasattr(model.model, "model") else model.model.encoder ) # self.frontend = frontend elif hub == "hf": pass else: encoder_class = tables.encoder_classes.get(audio_encoder) audio_encoder = encoder_class(input_size=input_size, **audio_encoder_conf) audio_encoder_output_size = audio_encoder.output_size() freeze = audio_encoder_conf.get("freeze", True) freeze_layer_num = int(audio_encoder_conf.get("freeze_layer_num", -1)) # if freeze_layer_num > 0: # freeze_layer_num = range(freeze_layer_num) if freeze: for name, param in audio_encoder.named_parameters(): if freeze_layer_num > 0: idx = re.search(r"\.\d+\.", name) if idx is not None: beg, end = idx.regs[0] layer_id = int(name[beg + 1 : end - 1]) if layer_id < freeze_layer_num: param.requires_grad = False elif "ln_post." not in name: param.requires_grad = False else: param.requires_grad = False audio_encoder.eval() self.audio_encoder = audio_encoder # llm self.llm = None from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig init_param_path = llm_conf.get("init_param_path", "vicuna-7b-v1.5") model = AutoModelForCausalLM.from_pretrained( init_param_path, load_in_8bit=None, device_map=None, use_cache=None, ) freeze = llm_conf.get("freeze", True) if freeze: for name, param in model.named_parameters(): param.requires_grad = False model.eval() self.llm_dtype = llm_conf.get("llm_dtype", "fp32") self.llm = model.to(dtype_map[self.llm_dtype]) llm_dim = model.get_input_embeddings().weight.shape[-1] # adaptor adaptor_class = tables.adaptor_classes.get(audio_adaptor) audio_adaptor_conf["encoder_dim"] = audio_encoder_output_size audio_adaptor_conf["llm_dim"] = llm_dim audio_adaptor = adaptor_class(**audio_adaptor_conf) init_param_path = audio_adaptor_conf.get("init_param_path", None) if init_param_path is not None: src_state = torch.load(init_param_path, map_location="cpu") flag = audio_adaptor.load_state_dict(src_state, strict=False) logging.info(f"Loading audio_adaptor ckpt: {init_param_path}, status: {flag}") self.audio_adaptor = audio_adaptor self.error_calculator = None self.length_normalized_loss = length_normalized_loss self.beam_search = None def forward( self, speech: torch.Tensor, speech_lengths: torch.Tensor, input_ids: torch.Tensor, attention_mask: torch.Tensor, labels_ids: torch.Tensor, fbank_beg: torch.Tensor, fbank_mask: torch.Tensor, **kwargs, ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]: """Encoder + Decoder + Calc loss Args: speech: (Batch, Length, ...) speech_lengths: (Batch, ) text: (Batch, Length) text_lengths: (Batch,) """ # import pdb # # pdb.set_trace() if len(speech_lengths.size()) > 1: speech_lengths = speech_lengths[:, 0] batch_size_speech, frames, _ = speech.shape batch_size, token_num = input_ids.shape with torch.cuda.amp.autocast(enabled=False): # audio encoder encoder_out, encoder_out_lens = self.encode(speech, speech_lengths) # audio_adaptor encoder_out, encoder_out_lens = self.audio_adaptor(encoder_out, encoder_out_lens) input_ids[input_ids < 0] = 0 inputs_embeds = self.llm.model.get_input_embeddings()(input_ids) batch_size, token_num, dims = inputs_embeds.shape fake_token_len = kwargs.get("fake_token_len") fake_token_len[fake_token_len < 0] = 0 fbank_beg[fbank_beg < 0] = 0 speech_idx = 0 for batch_idx in range(batch_size): for turn_id in range(fbank_beg.shape[1]): fbank_beg_idx = fbank_beg[batch_idx, turn_id].item() if fbank_beg_idx > 0: speech_token_len = fake_token_len[batch_idx, turn_id] speech_token = encoder_out[speech_idx, :speech_token_len, :] try: inputs_embeds[ batch_idx, fbank_beg_idx : fbank_beg_idx + speech_token_len, : ] = speech_token except Exception as e: # logging.error(f"{str(e)}, {traceback.format_exc()}") logging.info( f"batch_idx: {batch_idx}, inputs_embeds: {inputs_embeds.shape}, fbank_beg_idx: {fbank_beg_idx}, speech_token_len: {speech_token_len}, encoder_out: {encoder_out.shape}, encoder_out_lens: {encoder_out_lens}, fake_token_len: {fake_token_len}, speech_lengths: {speech_lengths}" ) # import pdb; # pdb.set_trace() speech_token_len = encoder_out_lens[speech_idx].item() speech_token = encoder_out[speech_idx, :speech_token_len, :] inputs_embeds[ batch_idx, fbank_beg_idx : fbank_beg_idx + speech_token_len, : ] = speech_token speech_idx += 1 with torch.cuda.amp.autocast( enabled=True if self.llm_dtype != "fp32" else False, dtype=dtype_map[self.llm_dtype] ): labels_ids[labels_ids == -1] = -100 attention_mask[attention_mask < 0] = 0 model_outputs = self.llm( inputs_embeds=inputs_embeds.to(dtype_map[self.llm_dtype]), attention_mask=attention_mask, labels=labels_ids, ) loss = model_outputs.loss stats = {} with torch.no_grad(): preds = torch.argmax(model_outputs.logits, -1) acc_att = compute_accuracy(preds[:, :-1], labels_ids[:, 1:], ignore_label=-100) stats["acc"] = acc_att stats["loss"] = torch.clone(loss.detach()) stats["batch_size"] = batch_size stats["batch_size_speech"] = batch_size_speech stats["batch_size_x_frames"] = frames * batch_size_speech stats["batch_size_real_frames"] = speech_lengths.sum().item() stats["padding_frames"] = stats["batch_size_x_frames"] - stats["batch_size_real_frames"] stats["batch_size_x_tokens"] = token_num * batch_size stats["batch_size_real_tokens"] = attention_mask.sum().item() stats["padding_tokens"] = stats["batch_size_x_tokens"] - stats["batch_size_real_tokens"] dialog_turns = (fbank_beg > 0).sum(-1) dialog_turns_max = torch.max(dialog_turns).int().item() dialog_turns_avg = dialog_turns.sum().item() / batch_size stats["dialog_turns_max"] = dialog_turns_max stats["dialog_turns_avg"] = dialog_turns_avg # force_gatherable: to-device and to-tensor if scalar for DataParallel if self.length_normalized_loss: batch_size = int((labels_ids > 0 + 1).sum()) loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device) return loss, stats, weight def encode(self, speech, speech_lengths): # audio encoder encoder_out, encoder_out_lens = self.audio_encoder(speech.permute(0, 2, 1), speech_lengths) return encoder_out, encoder_out_lens def data_template(self, data): system, user, assistant = [], [], [] for i, item in enumerate(data): role = item["role"] content = item["content"] if role == "system": system.append(content) elif role == "user": user.append(content) elif role == "assistant": assistant.append(content) system = system * len(user) contents = { "system": system, "user": user, "assistant": assistant, } return contents def data_load_speech(self, contents: dict, tokenizer, frontend, meta_data={}, **kwargs): system = contents["system"] user = contents["user"] assistant = contents["assistant"] pattern = re.compile(r"(<\|startofspeech\|>.*?<\|endofspeech\|>)") input_ids, labels, fbank, fbank_lens, fbank_mask, fbank_beg, fake_token_len = ( [], [], [], [], [], [], [], ) input_source_ids = [] for i, (system_prompt, user_prompt, target_out) in enumerate(zip(system, user, assistant)): if i >= kwargs.get("multiturn_num_max", 5): break if len(input_ids) > kwargs.get("max_token_length", 1500): break if i == 0: source_input = f"<|im_start|>system\n{system_prompt}<|im_end|>\n<|im_start|>user\n{user_prompt}<|im_end|>\n<|im_start|>assistant\n" else: source_input = f"<|im_start|>user\n{user_prompt}<|im_end|>\n<|im_start|>assistant\n" splits = pattern.split(source_input) source_ids = [] fbank_i = [] fbank_mask_i = [] fake_token_len_i = 0 fbank_beg_i = -1 fbank_lens_i = [] speech, speech_lengths = [], [] for k, sub_str in enumerate(splits): if not sub_str.startswith("<|startofspeech|>"): sub_token = tokenizer.encode(sub_str) source_ids += sub_token fbank_mask_i += [0] * len(sub_token) else: sub_str = sub_str.replace("<|startofspeech|>", "").replace( "<|endofspeech|>", "" ) if sub_str.startswith("!"): sub_str = sub_str[1:] if sub_str.startswith("!"): # !!bytes sub_str = eval(sub_str[1:]) try: time1 = time.perf_counter() data_src = load_audio_text_image_video(sub_str, fs=frontend.fs) time2 = time.perf_counter() meta_data["load_data"] = f"{time2 - time1:0.3f}" except Exception as e: logging.error(f"Loading wav failed! {str(e)}, {traceback.format_exc()}") speech, speech_lengths = extract_fbank( data_src, data_type=kwargs.get("data_type", "sound"), frontend=frontend, is_final=True, ) # speech: [b, T, d] time3 = time.perf_counter() meta_data["extract_feat"] = f"{time3 - time2:0.3f}" meta_data["batch_data_time"] = ( speech_lengths.sum().item() * frontend.frame_shift * frontend.lfr_n / 1000 ) if kwargs.get("permute", True): speech = speech.permute(0, 2, 1) if speech_lengths > kwargs.get("max_source_length", 5500): # logging.info( # f"speech_lengths > max_source_length: {speech_lengths}>{self.max_source_length}, {item}" # ) badcase_flag = True olens = 1 + (speech_lengths[0].item() - 3 + 2 * 1) // 2 olens = 1 + (olens - 3 + 2 * 1) // 2 fake_token_len_i = (olens - 1) // 2 + 1 fake_token = [0] * fake_token_len_i fbank_beg_i = len(source_ids) source_ids += fake_token fbank_mask_i += [1] * len(fake_token) fbank_beg += [fbank_beg_i + len(input_ids)] fake_token_len += [fake_token_len_i] source_mask = [-100] * len(source_ids) target_out = f"{target_out}<|im_end|>" target_ids = tokenizer.encode(target_out) input_source_ids = input_ids + source_ids input_ids += source_ids + target_ids labels += source_mask + target_ids fbank_mask += fbank_mask_i if len(speech) > 0: fbank.append(speech[0, :, :]) fbank_lens.append(speech_lengths) input_ids = torch.tensor(input_ids, dtype=torch.int64) # [: self.max_token_length] attention_mask = torch.tensor([1] * len(input_ids), dtype=torch.int32) labels = torch.tensor(labels, dtype=torch.int64) # [: self.max_token_length] # fbank = speech[0, :, :] # fbank_lens = torch.tensor(fbank_lens, dtype=torch.int32) fbank_mask = torch.tensor(fbank_mask, dtype=torch.float32) fbank_beg = torch.tensor(fbank_beg, dtype=torch.int32) fake_token_len = torch.tensor(fake_token_len, dtype=torch.int32) source_ids = torch.tensor(input_source_ids, dtype=torch.int64) target_ids = torch.tensor(target_ids, dtype=torch.int64) if len(fbank) > 0: speech = torch.nn.utils.rnn.pad_sequence(fbank, batch_first=True, padding_value=0.0) speech_lengths = torch.nn.utils.rnn.pad_sequence( fbank_lens, batch_first=True, padding_value=-1 ) else: speech = [] speech_lengths = [] output = { "speech": speech, "speech_lengths": speech_lengths, "fbank_mask": fbank_mask[None, :], "fbank_beg": fbank_beg[None,], "fake_token_len": fake_token_len[None, :], "input_ids": input_ids[None,], "attention_mask": attention_mask[None,], "labels_ids": labels, "source_ids": source_ids[None, :], "target_ids": target_ids[None, :], } return output def inference_prepare( self, data_in, data_lengths=None, key: list = None, tokenizer=None, frontend=None, **kwargs, ): meta_data = {} prompt = kwargs.get("prompt", None) if kwargs.get("batch_size", 1) > 1: raise NotImplementedError("batch decoding is not implemented") contents = self.data_template(data_in[0]) output = self.data_load_speech(contents, tokenizer, frontend, meta_data=meta_data, **kwargs) batch = to_device(output, kwargs["device"]) # audio encoder speech = batch["speech"] if len(speech) > 0: speech_lengths = batch["speech_lengths"][:, 0] # fp16 if kwargs.get("fp16", False): speech = speech.to(torch.float16) elif kwargs.get("bf16", False): speech = speech.to(torch.bfloat16) # audio encoder encoder_out, encoder_out_lens = self.encode(speech, speech_lengths) # audio_adaptor encoder_out, encoder_out_lens = self.audio_adaptor(encoder_out, encoder_out_lens) input_ids = batch["input_ids"] source_ids = batch["source_ids"] fbank_beg = batch["fbank_beg"] fake_token_len = batch["fake_token_len"] if not kwargs.get("tearchforing", False): input_ids = source_ids input_ids[input_ids < 0] = 0 inputs_embeds = self.llm.model.get_input_embeddings()(input_ids) batch_size, token_num, dims = inputs_embeds.shape fake_token_len[fake_token_len < 0] = 0 fbank_beg[fbank_beg < 0] = 0 speech_idx = 0 for batch_idx in range(batch_size): for turn_id in range(fbank_beg.shape[1]): fbank_beg_idx = fbank_beg[batch_idx, turn_id].item() if fbank_beg_idx > 0: speech_token_len = fake_token_len[batch_idx, turn_id] speech_token = encoder_out[speech_idx, :speech_token_len, :] try: inputs_embeds[ batch_idx, fbank_beg_idx : fbank_beg_idx + speech_token_len, : ] = speech_token except Exception as e: # logging.error(f"{str(e)}, {traceback.format_exc()}") logging.info( f"batch_idx: {batch_idx}, inputs_embeds: {inputs_embeds.shape}, fbank_beg_idx: {fbank_beg_idx}, speech_token_len: {speech_token_len}, encoder_out: {encoder_out.shape}, encoder_out_lens: {encoder_out_lens}, fake_token_len: {fake_token_len}, speech_lengths: {speech_lengths}" ) # import pdb; # pdb.set_trace() speech_token_len = encoder_out_lens[speech_idx].item() speech_token = encoder_out[speech_idx, :speech_token_len, :] inputs_embeds[ batch_idx, fbank_beg_idx : fbank_beg_idx + speech_token_len, : ] = speech_token speech_idx += 1 return inputs_embeds, contents, batch, source_ids, meta_data def inference( self, data_in, data_lengths=None, key: list = None, tokenizer=None, frontend=None, **kwargs, ): inputs_embeds, contents, batch, source_ids, meta_data = self.inference_prepare( data_in, data_lengths, key, tokenizer, frontend, **kwargs ) llm_dtype = kwargs.get("llm_dtype", "fp32") if llm_dtype == "fp32": llm_dtype = "fp16" if kwargs.get("fp16", False) else llm_dtype llm_dtype = "bf16" if kwargs.get("bf16", False) else llm_dtype with torch.cuda.amp.autocast( enabled=True if llm_dtype != "fp32" else False, dtype=dtype_map[llm_dtype] ): label = contents["assistant"][-1] self.llm = self.llm.to(dtype_map[llm_dtype]) inputs_embeds = inputs_embeds.to(dtype_map[llm_dtype]) if not kwargs.get("tearchforing", False): generated_ids = self.llm.generate( inputs_embeds=inputs_embeds, max_new_tokens=kwargs.get("max_length", 512) ) # generated_ids = [ # output_ids[len(input_id) :] # for input_id, output_ids in zip(input_ids, generated_ids) # ] response = tokenizer.batch_decode( generated_ids, skip_special_tokens=kwargs.get("skip_special_tokens", True) )[0] loss = None else: labels_ids = batch["labels_ids"] labels_ids[labels_ids == -1] = -100 attention_mask = batch.get("attention_mask", None) # attention_mask = attention_mask.to(dtype_map[llm_dtype]) model_outputs = self.llm( inputs_embeds=inputs_embeds, attention_mask=attention_mask, labels=labels_ids ) preds = torch.argmax(model_outputs.logits, -1)[:, source_ids.shape[1] :] response = tokenizer.batch_decode( preds, add_special_tokens=False, skip_special_tokens=kwargs.get("skip_special_tokens", True), )[0] loss = model_outputs.loss.item() ibest_writer = None if kwargs.get("output_dir") is not None: if not hasattr(self, "writer"): self.writer = DatadirWriter(kwargs.get("output_dir")) ibest_writer = self.writer[f"{0 + 1}best_recog"] results = [] response_clean = re.sub(r"[^\w\s\u3000\u4e00-\u9fff]+", "", response) result_i = {"key": key[0], "text": response, "text_tn": response_clean, "label": label} if loss is not None: result_i["loss"] = loss results.append(result_i) if ibest_writer is not None: ibest_writer["text"][key[0]] = response.replace("\n", " ") ibest_writer["label"][key[0]] = label.replace("\n", " ") ibest_writer["text_tn"][key[0]] = response_clean return results, meta_data