import torch import codecs import logging import argparse import numpy as np # import edit_distance from itertools import zip_longest def cif_wo_hidden(alphas, threshold): batch_size, len_time = alphas.size() # loop varss integrate = torch.zeros([batch_size], device=alphas.device) # intermediate vars along time list_fires = [] for t in range(len_time): alpha = alphas[:, t] integrate += alpha list_fires.append(integrate) fire_place = integrate >= threshold integrate = torch.where(fire_place, integrate - torch.ones([batch_size], device=alphas.device)*threshold, integrate) fires = torch.stack(list_fires, 1) return fires def ts_prediction_lfr6_standard(us_alphas, us_peaks, char_list, vad_offset=0.0, force_time_shift=-1.5, sil_in_str=True ): if not len(char_list): return "", [] START_END_THRESHOLD = 5 MAX_TOKEN_DURATION = 12 TIME_RATE = 10.0 * 6 / 1000 / 3 # 3 times upsampled if len(us_alphas.shape) == 2: alphas, peaks = us_alphas[0], us_peaks[0] # support inference batch_size=1 only else: alphas, peaks = us_alphas, us_peaks if char_list[-1] == '': char_list = char_list[:-1] fire_place = torch.where(peaks>1.0-1e-4)[0].cpu().numpy() + force_time_shift # total offset if len(fire_place) != len(char_list) + 1: alphas /= (alphas.sum() / (len(char_list) + 1)) alphas = alphas.unsqueeze(0) peaks = cif_wo_hidden(alphas, threshold=1.0-1e-4)[0] fire_place = torch.where(peaks>1.0-1e-4)[0].cpu().numpy() + force_time_shift # total offset num_frames = peaks.shape[0] timestamp_list = [] new_char_list = [] # for bicif model trained with large data, cif2 actually fires when a character starts # so treat the frames between two peaks as the duration of the former token fire_place = torch.where(peaks>1.0-1e-4)[0].cpu().numpy() + force_time_shift # total offset # assert num_peak == len(char_list) + 1 # number of peaks is supposed to be number of tokens + 1 # begin silence if fire_place[0] > START_END_THRESHOLD: # char_list.insert(0, '') timestamp_list.append([0.0, fire_place[0]*TIME_RATE]) new_char_list.append('') # tokens timestamp for i in range(len(fire_place)-1): new_char_list.append(char_list[i]) if MAX_TOKEN_DURATION < 0 or fire_place[i+1] - fire_place[i] <= MAX_TOKEN_DURATION: timestamp_list.append([fire_place[i]*TIME_RATE, fire_place[i+1]*TIME_RATE]) else: # cut the duration to token and sil of the 0-weight frames last long _split = fire_place[i] + MAX_TOKEN_DURATION timestamp_list.append([fire_place[i]*TIME_RATE, _split*TIME_RATE]) timestamp_list.append([_split*TIME_RATE, fire_place[i+1]*TIME_RATE]) new_char_list.append('') # tail token and end silence # new_char_list.append(char_list[-1]) if num_frames - fire_place[-1] > START_END_THRESHOLD: _end = (num_frames + fire_place[-1]) * 0.5 # _end = fire_place[-1] timestamp_list[-1][1] = _end*TIME_RATE timestamp_list.append([_end*TIME_RATE, num_frames*TIME_RATE]) new_char_list.append("") else: timestamp_list[-1][1] = num_frames*TIME_RATE if vad_offset: # add offset time in model with vad for i in range(len(timestamp_list)): timestamp_list[i][0] = timestamp_list[i][0] + vad_offset / 1000.0 timestamp_list[i][1] = timestamp_list[i][1] + vad_offset / 1000.0 res_txt = "" for char, timestamp in zip(new_char_list, timestamp_list): #if char != '': if not sil_in_str and char == '': continue res_txt += "{} {} {};".format(char, str(timestamp[0]+0.0005)[:5], str(timestamp[1]+0.0005)[:5]) res = [] for char, timestamp in zip(new_char_list, timestamp_list): if char != '': res.append([int(timestamp[0] * 1000), int(timestamp[1] * 1000)]) return res_txt, res def time_stamp_sentence(punc_id_list, time_stamp_postprocessed, text_postprocessed): punc_list = [',', '。', '?', '、'] res = [] if text_postprocessed is None: return res if time_stamp_postprocessed is None: return res if len(time_stamp_postprocessed) == 0: return res if len(text_postprocessed) == 0: return res if punc_id_list is None or len(punc_id_list) == 0: res.append({ 'text': text_postprocessed.split(), "start": time_stamp_postprocessed[0][0], "end": time_stamp_postprocessed[-1][1], 'text_seg': text_postprocessed.split(), "ts_list": time_stamp_postprocessed, }) return res if len(punc_id_list) != len(time_stamp_postprocessed): print(" warning length mistach!!!!!!") sentence_text = "" sentence_text_seg = "" ts_list = [] sentence_start = time_stamp_postprocessed[0][0] sentence_end = time_stamp_postprocessed[0][1] texts = text_postprocessed.split() punc_stamp_text_list = list(zip_longest(punc_id_list, time_stamp_postprocessed, texts, fillvalue=None)) for punc_stamp_text in punc_stamp_text_list: punc_id, time_stamp, text = punc_stamp_text # sentence_text += text if text is not None else '' if text is not None: if 'a' <= text[0] <= 'z' or 'A' <= text[0] <= 'Z': sentence_text += ' ' + text elif len(sentence_text) and ('a' <= sentence_text[-1] <= 'z' or 'A' <= sentence_text[-1] <= 'Z'): sentence_text += ' ' + text else: sentence_text += text sentence_text_seg += text + ' ' ts_list.append(time_stamp) punc_id = int(punc_id) if punc_id is not None else 1 sentence_end = time_stamp[1] if time_stamp is not None else sentence_end if punc_id > 1: sentence_text += punc_list[punc_id - 2] res.append({ 'text': sentence_text, "start": sentence_start, "end": sentence_end, "text_seg": sentence_text_seg, "ts_list": ts_list }) sentence_text = '' sentence_text_seg = '' ts_list = [] sentence_start = sentence_end return res # class AverageShiftCalculator(): # def __init__(self): # logging.warning("Calculating average shift.") # def __call__(self, file1, file2): # uttid_list1, ts_dict1 = self.read_timestamps(file1) # uttid_list2, ts_dict2 = self.read_timestamps(file2) # uttid_intersection = self._intersection(uttid_list1, uttid_list2) # res = self.as_cal(uttid_intersection, ts_dict1, ts_dict2) # logging.warning("Average shift of {} and {}: {}.".format(file1, file2, str(res)[:8])) # logging.warning("Following timestamp pair differs most: {}, detail:{}".format(self.max_shift, self.max_shift_uttid)) # # def _intersection(self, list1, list2): # set1 = set(list1) # set2 = set(list2) # if set1 == set2: # logging.warning("Uttid same checked.") # return set1 # itsc = list(set1 & set2) # logging.warning("Uttid differs: file1 {}, file2 {}, lines same {}.".format(len(list1), len(list2), len(itsc))) # return itsc # # def read_timestamps(self, file): # # read timestamps file in standard format # uttid_list = [] # ts_dict = {} # with codecs.open(file, 'r') as fin: # for line in fin.readlines(): # text = '' # ts_list = [] # line = line.rstrip() # uttid = line.split()[0] # uttid_list.append(uttid) # body = " ".join(line.split()[1:]) # for pd in body.split(';'): # if not len(pd): continue # # pdb.set_trace() # char, start, end = pd.lstrip(" ").split(' ') # text += char + ',' # ts_list.append((float(start), float(end))) # # ts_lists.append(ts_list) # ts_dict[uttid] = (text[:-1], ts_list) # logging.warning("File {} read done.".format(file)) # return uttid_list, ts_dict # # def _shift(self, filtered_timestamp_list1, filtered_timestamp_list2): # shift_time = 0 # for fts1, fts2 in zip(filtered_timestamp_list1, filtered_timestamp_list2): # shift_time += abs(fts1[0] - fts2[0]) + abs(fts1[1] - fts2[1]) # num_tokens = len(filtered_timestamp_list1) # return shift_time, num_tokens # # # def as_cal(self, uttid_list, ts_dict1, ts_dict2): # # # calculate average shift between timestamp1 and timestamp2 # # # when characters differ, use edit distance alignment # # # and calculate the error between the same characters # # self._accumlated_shift = 0 # # self._accumlated_tokens = 0 # # self.max_shift = 0 # # self.max_shift_uttid = None # # for uttid in uttid_list: # # (t1, ts1) = ts_dict1[uttid] # # (t2, ts2) = ts_dict2[uttid] # # _align, _align2, _align3 = [], [], [] # # fts1, fts2 = [], [] # # _t1, _t2 = [], [] # # sm = edit_distance.SequenceMatcher(t1.split(','), t2.split(',')) # # s = sm.get_opcodes() # # for j in range(len(s)): # # if s[j][0] == "replace" or s[j][0] == "insert": # # _align.append(0) # # if s[j][0] == "replace" or s[j][0] == "delete": # # _align3.append(0) # # elif s[j][0] == "equal": # # _align.append(1) # # _align3.append(1) # # else: # # continue # # # use s to index t2 # # for a, ts , t in zip(_align, ts2, t2.split(',')): # # if a: # # fts2.append(ts) # # _t2.append(t) # # sm2 = edit_distance.SequenceMatcher(t2.split(','), t1.split(',')) # # s = sm2.get_opcodes() # # for j in range(len(s)): # # if s[j][0] == "replace" or s[j][0] == "insert": # # _align2.append(0) # # elif s[j][0] == "equal": # # _align2.append(1) # # else: # # continue # # # use s2 tp index t1 # # for a, ts, t in zip(_align3, ts1, t1.split(',')): # # if a: # # fts1.append(ts) # # _t1.append(t) # # if len(fts1) == len(fts2): # # shift_time, num_tokens = self._shift(fts1, fts2) # # self._accumlated_shift += shift_time # # self._accumlated_tokens += num_tokens # # if shift_time/num_tokens > self.max_shift: # # self.max_shift = shift_time/num_tokens # # self.max_shift_uttid = uttid # # else: # # logging.warning("length mismatch") # # return self._accumlated_shift / self._accumlated_tokens def convert_external_alphas(alphas_file, text_file, output_file): from funasr.models.paraformer.cif_predictor import cif_wo_hidden with open(alphas_file, 'r') as f1, open(text_file, 'r') as f2, open(output_file, 'w') as f3: for line1, line2 in zip(f1.readlines(), f2.readlines()): line1 = line1.rstrip() line2 = line2.rstrip() assert line1.split()[0] == line2.split()[0] uttid = line1.split()[0] alphas = [float(i) for i in line1.split()[1:]] new_alphas = np.array(remove_chunk_padding(alphas)) new_alphas[-1] += 1e-4 text = line2.split()[1:] if len(text) + 1 != int(new_alphas.sum()): # force resize new_alphas *= (len(text) + 1) / int(new_alphas.sum()) peaks = cif_wo_hidden(torch.Tensor(new_alphas).unsqueeze(0), 1.0-1e-4) if " " in text: text = text.split() else: text = [i for i in text] res_str, _ = ts_prediction_lfr6_standard(new_alphas, peaks[0], text, force_time_shift=-7.0, sil_in_str=False) f3.write("{} {}\n".format(uttid, res_str)) def remove_chunk_padding(alphas): # remove the padding part in alphas if using chunk paraformer for GPU START_ZERO = 45 MID_ZERO = 75 REAL_FRAMES = 360 # for chunk based encoder 10-120-10 and fsmn padding 5 alphas = alphas[START_ZERO:] # remove the padding at beginning new_alphas = [] while True: new_alphas = new_alphas + alphas[:REAL_FRAMES] alphas = alphas[REAL_FRAMES+MID_ZERO:] if len(alphas) < REAL_FRAMES: break return new_alphas SUPPORTED_MODES = ['cal_aas', 'read_ext_alphas'] def main(args): # if args.mode == 'cal_aas': # asc = AverageShiftCalculator() # asc(args.input, args.input2) if args.mode == 'read_ext_alphas': convert_external_alphas(args.input, args.input2, args.output) else: logging.error("Mode {} not in SUPPORTED_MODES: {}.".format(args.mode, SUPPORTED_MODES)) if __name__ == '__main__': parser = argparse.ArgumentParser(description='timestamp tools') parser.add_argument('--mode', default=None, type=str, choices=SUPPORTED_MODES, help='timestamp related toolbox') parser.add_argument('--input', default=None, type=str, help='input file path') parser.add_argument('--output', default=None, type=str, help='output file name') parser.add_argument('--input2', default=None, type=str, help='input2 file path') parser.add_argument('--kaldi-ts-type', default='v2', type=str, choices=['v0', 'v1', 'v2'], help='kaldi timestamp to write') args = parser.parse_args() main(args)