#!/usr/bin/env python3 # -*- encoding: utf-8 -*- # Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved. # MIT License (https://opensource.org/licenses/MIT) import torch torch.set_num_threads(1) import argparse import logging import os import sys import json from typing import Optional from typing import Union import numpy as np import torch from funasr.build_utils.build_streaming_iterator import build_streaming_iterator from funasr.fileio.datadir_writer import DatadirWriter from funasr.torch_utils.set_all_random_seed import set_all_random_seed from funasr.utils import config_argparse from funasr.utils.cli_utils import get_commandline_args from funasr.utils.types import str2bool from funasr.utils.types import str2triple_str from funasr.utils.types import str_or_none from funasr.bin.vad_infer import Speech2VadSegment, Speech2VadSegmentOnline def inference_vad( batch_size: int, ngpu: int, log_level: Union[int, str], # data_path_and_name_and_type, vad_infer_config: Optional[str], vad_model_file: Optional[str], vad_cmvn_file: Optional[str] = None, # raw_inputs: Union[np.ndarray, torch.Tensor] = None, key_file: Optional[str] = None, allow_variable_data_keys: bool = False, output_dir: Optional[str] = None, dtype: str = "float32", seed: int = 0, num_workers: int = 1, **kwargs, ): if batch_size > 1: raise NotImplementedError("batch decoding is not implemented") logging.basicConfig( level=log_level, format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s", ) if ngpu >= 1 and torch.cuda.is_available(): device = "cuda" else: device = "cpu" batch_size = 1 # 1. Set random-seed set_all_random_seed(seed) # 2. Build speech2vadsegment speech2vadsegment_kwargs = dict( vad_infer_config=vad_infer_config, vad_model_file=vad_model_file, vad_cmvn_file=vad_cmvn_file, device=device, dtype=dtype, ) logging.info("speech2vadsegment_kwargs: {}".format(speech2vadsegment_kwargs)) speech2vadsegment = Speech2VadSegment(**speech2vadsegment_kwargs) def _forward( data_path_and_name_and_type, raw_inputs: Union[np.ndarray, torch.Tensor] = None, output_dir_v2: Optional[str] = None, fs: dict = None, param_dict: dict = None ): # 3. Build data-iterator if data_path_and_name_and_type is None and raw_inputs is not None: if isinstance(raw_inputs, torch.Tensor): raw_inputs = raw_inputs.numpy() data_path_and_name_and_type = [raw_inputs, "speech", "waveform"] loader = build_streaming_iterator( task_name="vad", preprocess_args=None, data_path_and_name_and_type=data_path_and_name_and_type, dtype=dtype, batch_size=batch_size, key_file=key_file, num_workers=num_workers, ) finish_count = 0 file_count = 1 # 7 .Start for-loop # FIXME(kamo): The output format should be discussed about output_path = output_dir_v2 if output_dir_v2 is not None else output_dir if output_path is not None: writer = DatadirWriter(output_path) ibest_writer = writer[f"1best_recog"] else: writer = None ibest_writer = None vad_results = [] for keys, batch in loader: assert isinstance(batch, dict), type(batch) assert all(isinstance(s, str) for s in keys), keys _bs = len(next(iter(batch.values()))) assert len(keys) == _bs, f"{len(keys)} != {_bs}" # do vad segment _, results = speech2vadsegment(**batch) for i, _ in enumerate(keys): if "MODELSCOPE_ENVIRONMENT" in os.environ and os.environ["MODELSCOPE_ENVIRONMENT"] == "eas": results[i] = json.dumps(results[i]) item = {'key': keys[i], 'value': results[i]} vad_results.append(item) if writer is not None: ibest_writer["text"][keys[i]] = "{}".format(results[i]) torch.cuda.empty_cache() return vad_results return _forward def inference_vad_online( batch_size: int, ngpu: int, log_level: Union[int, str], # data_path_and_name_and_type, vad_infer_config: Optional[str], vad_model_file: Optional[str], vad_cmvn_file: Optional[str] = None, # raw_inputs: Union[np.ndarray, torch.Tensor] = None, key_file: Optional[str] = None, allow_variable_data_keys: bool = False, output_dir: Optional[str] = None, dtype: str = "float32", seed: int = 0, num_workers: int = 1, **kwargs, ): logging.basicConfig( level=log_level, format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s", ) if ngpu >= 1 and torch.cuda.is_available(): device = "cuda" else: device = "cpu" batch_size = 1 # 1. Set random-seed set_all_random_seed(seed) # 2. Build speech2vadsegment speech2vadsegment_kwargs = dict( vad_infer_config=vad_infer_config, vad_model_file=vad_model_file, vad_cmvn_file=vad_cmvn_file, device=device, dtype=dtype, ) logging.info("speech2vadsegment_kwargs: {}".format(speech2vadsegment_kwargs)) speech2vadsegment = Speech2VadSegmentOnline(**speech2vadsegment_kwargs) def _forward( data_path_and_name_and_type, raw_inputs: Union[np.ndarray, torch.Tensor] = None, output_dir_v2: Optional[str] = None, fs: dict = None, param_dict: dict = None, ): # 3. Build data-iterator if data_path_and_name_and_type is None and raw_inputs is not None: if isinstance(raw_inputs, torch.Tensor): raw_inputs = raw_inputs.numpy() data_path_and_name_and_type = [raw_inputs, "speech", "waveform"] loader = build_streaming_iterator( task_name="vad", preprocess_args=None, data_path_and_name_and_type=data_path_and_name_and_type, dtype=dtype, batch_size=batch_size, key_file=key_file, num_workers=num_workers, ) finish_count = 0 file_count = 1 # 7 .Start for-loop # FIXME(kamo): The output format should be discussed about output_path = output_dir_v2 if output_dir_v2 is not None else output_dir if output_path is not None: writer = DatadirWriter(output_path) ibest_writer = writer[f"1best_recog"] else: writer = None ibest_writer = None vad_results = [] if param_dict is None: param_dict = dict() param_dict['in_cache'] = dict() param_dict['is_final'] = True batch_in_cache = param_dict.get('in_cache', dict()) is_final = param_dict.get('is_final', False) max_end_sil = param_dict.get('max_end_sil', 800) for keys, batch in loader: assert isinstance(batch, dict), type(batch) assert all(isinstance(s, str) for s in keys), keys _bs = len(next(iter(batch.values()))) assert len(keys) == _bs, f"{len(keys)} != {_bs}" batch['in_cache'] = batch_in_cache batch['is_final'] = is_final batch['max_end_sil'] = max_end_sil # do vad segment _, results, param_dict['in_cache'] = speech2vadsegment(**batch) # param_dict['in_cache'] = batch['in_cache'] if results: for i, _ in enumerate(keys): if results[i]: if "MODELSCOPE_ENVIRONMENT" in os.environ and os.environ["MODELSCOPE_ENVIRONMENT"] == "eas": results[i] = json.dumps(results[i]) item = {'key': keys[i], 'value': results[i]} vad_results.append(item) if writer is not None: ibest_writer["text"][keys[i]] = "{}".format(results[i]) return vad_results return _forward def inference_launch(mode, **kwargs): if mode == "offline": return inference_vad(**kwargs) elif mode == "online": return inference_vad_online(**kwargs) else: logging.info("Unknown decoding mode: {}".format(mode)) return None def get_parser(): parser = config_argparse.ArgumentParser( description="VAD Decoding", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) # Note(kamo): Use '_' instead of '-' as separator. # '-' is confusing if written in yaml. parser.add_argument( "--log_level", type=lambda x: x.upper(), default="INFO", choices=("CRITICAL", "ERROR", "WARNING", "INFO", "DEBUG", "NOTSET"), help="The verbose level of logging", ) parser.add_argument("--output_dir", type=str, required=True) parser.add_argument( "--ngpu", type=int, default=0, help="The number of gpus. 0 indicates CPU mode", ) parser.add_argument( "--njob", type=int, default=1, help="The number of jobs for each gpu", ) parser.add_argument( "--gpuid_list", type=str, default="", help="The visible gpus", ) parser.add_argument("--seed", type=int, default=0, help="Random seed") parser.add_argument( "--dtype", default="float32", choices=["float16", "float32", "float64"], help="Data type", ) parser.add_argument( "--num_workers", type=int, default=1, help="The number of workers used for DataLoader", ) group = parser.add_argument_group("Input data related") group.add_argument( "--data_path_and_name_and_type", type=str2triple_str, required=True, action="append", ) group.add_argument("--key_file", type=str_or_none) group.add_argument("--allow_variable_data_keys", type=str2bool, default=False) group = parser.add_argument_group("The model configuration related") group.add_argument( "--vad_infer_config", type=str, help="VAD infer configuration", ) group.add_argument( "--vad_model_file", type=str, help="VAD model parameter file", ) group.add_argument( "--vad_cmvn_file", type=str, help="Global CMVN file", ) group.add_argument( "--vad_train_config", type=str, help="VAD training configuration", ) group = parser.add_argument_group("The inference configuration related") group.add_argument( "--batch_size", type=int, default=1, help="The batch size for inference", ) return parser def main(cmd=None): print(get_commandline_args(), file=sys.stderr) parser = get_parser() parser.add_argument( "--mode", type=str, default="vad", help="The decoding mode", ) args = parser.parse_args(cmd) kwargs = vars(args) kwargs.pop("config", None) # set logging messages logging.basicConfig( level=args.log_level, format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s", ) logging.info("Decoding args: {}".format(kwargs)) # gpu setting if args.ngpu > 0: jobid = int(args.output_dir.split(".")[-1]) gpuid = args.gpuid_list.split(",")[(jobid - 1) // args.njob] os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"] = gpuid inference_pipeline = inference_launch(**kwargs) return inference_pipeline(kwargs["data_path_and_name_and_type"]) if __name__ == "__main__": main()