#!/usr/bin/env python3 # -*- encoding: utf-8 -*- # Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved. # MIT License (https://opensource.org/licenses/MIT) import logging import os from collections import OrderedDict from pathlib import Path from typing import Any from typing import Optional from typing import Union import numpy as np import torch from scipy.ndimage import median_filter from torch.nn import functional as F from funasr.models.frontend.wav_frontend import WavFrontendMel23 from funasr.tasks.diar import DiarTask from funasr.build_utils.build_model_from_file import build_model_from_file from funasr.torch_utils.device_funcs import to_device from funasr.utils.misc import statistic_model_parameters class Speech2DiarizationEEND: """Speech2Diarlization class Examples: >>> import soundfile >>> import numpy as np >>> speech2diar = Speech2DiarizationEEND("diar_sond_config.yml", "diar_sond.pb") >>> profile = np.load("profiles.npy") >>> audio, rate = soundfile.read("speech.wav") >>> speech2diar(audio, profile) {"spk1": [(int, int), ...], ...} """ def __init__( self, diar_train_config: Union[Path, str] = None, diar_model_file: Union[Path, str] = None, device: str = "cpu", dtype: str = "float32", ): # 1. Build Diarization model diar_model, diar_train_args = build_model_from_file( config_file=diar_train_config, model_file=diar_model_file, device=device, task_name="diar", mode="eend-ola", ) frontend = None if diar_train_args.frontend is not None and diar_train_args.frontend_conf is not None: frontend = WavFrontendMel23(**diar_train_args.frontend_conf) # set up seed for eda np.random.seed(diar_train_args.seed) torch.manual_seed(diar_train_args.seed) torch.cuda.manual_seed(diar_train_args.seed) os.environ['PYTORCH_SEED'] = str(diar_train_args.seed) logging.info("diar_model: {}".format(diar_model)) logging.info("diar_train_args: {}".format(diar_train_args)) diar_model.to(dtype=getattr(torch, dtype)).eval() self.diar_model = diar_model self.diar_train_args = diar_train_args self.device = device self.dtype = dtype self.frontend = frontend @torch.no_grad() def __call__( self, speech: Union[torch.Tensor, np.ndarray], speech_lengths: Union[torch.Tensor, np.ndarray] = None ): """Inference Args: speech: Input speech data Returns: diarization results """ # Input as audio signal if isinstance(speech, np.ndarray): speech = torch.tensor(speech) if self.frontend is not None: feats, feats_len = self.frontend.forward(speech, speech_lengths) feats = to_device(feats, device=self.device) feats_len = feats_len.int() self.diar_model.frontend = None else: feats = speech feats_len = speech_lengths batch = {"speech": feats, "speech_lengths": feats_len} batch = to_device(batch, device=self.device) results = self.diar_model.estimate_sequential(**batch) return results class Speech2DiarizationSOND: """Speech2Xvector class Examples: >>> import soundfile >>> import numpy as np >>> speech2diar = Speech2DiarizationSOND("diar_sond_config.yml", "diar_sond.pb") >>> profile = np.load("profiles.npy") >>> audio, rate = soundfile.read("speech.wav") >>> speech2diar(audio, profile) {"spk1": [(int, int), ...], ...} """ def __init__( self, diar_train_config: Union[Path, str] = None, diar_model_file: Union[Path, str] = None, device: Union[str, torch.device] = "cpu", batch_size: int = 1, dtype: str = "float32", streaming: bool = False, smooth_size: int = 83, dur_threshold: float = 10, ): # TODO: 1. Build Diarization model diar_model, diar_train_args = build_model_from_file( config_file=diar_train_config, model_file=diar_model_file, device=device, task_name="diar", mode="sond", ) logging.info("diar_model: {}".format(diar_model)) logging.info("model parameter number: {}".format(statistic_model_parameters(diar_model))) logging.info("diar_train_args: {}".format(diar_train_args)) diar_model.to(dtype=getattr(torch, dtype)).eval() self.diar_model = diar_model self.diar_train_args = diar_train_args self.token_list = diar_train_args.token_list self.smooth_size = smooth_size self.dur_threshold = dur_threshold self.device = device self.dtype = dtype def smooth_multi_labels(self, multi_label): multi_label = median_filter(multi_label, (self.smooth_size, 1), mode="constant", cval=0.0).astype(int) return multi_label @staticmethod def calc_spk_turns(label_arr, spk_list): turn_list = [] length = label_arr.shape[0] n_spk = label_arr.shape[1] for k in range(n_spk): if spk_list[k] == "None": continue in_utt = False start = 0 for i in range(length): if label_arr[i, k] == 1 and in_utt is False: start = i in_utt = True if label_arr[i, k] == 0 and in_utt is True: turn_list.append([spk_list[k], start, i - start]) in_utt = False if in_utt: turn_list.append([spk_list[k], start, length - start]) return turn_list @staticmethod def seq2arr(seq, vec_dim=8): def int2vec(x, vec_dim=8, dtype=np.int32): b = ('{:0' + str(vec_dim) + 'b}').format(x) # little-endian order: lower bit first return (np.array(list(b)[::-1]) == '1').astype(dtype) # process oov seq = np.array([int(x) for x in seq]) new_seq = [] for i, x in enumerate(seq): if x < 2 ** vec_dim: new_seq.append(x) else: idx_list = np.where(seq < 2 ** vec_dim)[0] if len(idx_list) > 0: idx = np.abs(idx_list - i).argmin() new_seq.append(seq[idx_list[idx]]) else: new_seq.append(0) return np.row_stack([int2vec(x, vec_dim) for x in new_seq]) def post_processing(self, raw_logits: torch.Tensor, spk_num: int, output_format: str = "speaker_turn"): logits_idx = raw_logits.argmax(-1) # B, T, vocab_size -> B, T # upsampling outputs to match inputs ut = logits_idx.shape[1] * self.diar_model.encoder.time_ds_ratio logits_idx = F.upsample( logits_idx.unsqueeze(1).float(), size=(ut,), mode="nearest", ).squeeze(1).long() logits_idx = logits_idx[0].tolist() pse_labels = [self.token_list[x] for x in logits_idx] if output_format == "pse_labels": return pse_labels, None multi_labels = self.seq2arr(pse_labels, spk_num)[:, :spk_num] # remove padding speakers multi_labels = self.smooth_multi_labels(multi_labels) if output_format == "binary_labels": return multi_labels, None spk_list = ["spk{}".format(i + 1) for i in range(spk_num)] spk_turns = self.calc_spk_turns(multi_labels, spk_list) results = OrderedDict() for spk, st, dur in spk_turns: if spk not in results: results[spk] = [] if dur > self.dur_threshold: results[spk].append((st, st + dur)) # sort segments in start time ascending for spk in results: results[spk] = sorted(results[spk], key=lambda x: x[0]) return results, pse_labels @torch.no_grad() def __call__( self, speech: Union[torch.Tensor, np.ndarray], profile: Union[torch.Tensor, np.ndarray], output_format: str = "speaker_turn" ): """Inference Args: speech: Input speech data profile: Speaker profiles Returns: diarization results for each speaker """ # Input as audio signal if isinstance(speech, np.ndarray): speech = torch.tensor(speech) if isinstance(profile, np.ndarray): profile = torch.tensor(profile) # data: (Nsamples,) -> (1, Nsamples) speech = speech.unsqueeze(0).to(getattr(torch, self.dtype)) profile = profile.unsqueeze(0).to(getattr(torch, self.dtype)) # lengths: (1,) speech_lengths = speech.new_full([1], dtype=torch.long, fill_value=speech.size(1)) profile_lengths = profile.new_full([1], dtype=torch.long, fill_value=profile.size(1)) batch = {"speech": speech, "speech_lengths": speech_lengths, "profile": profile, "profile_lengths": profile_lengths} # a. To device batch = to_device(batch, device=self.device) logits = self.diar_model.prediction_forward(**batch) results, pse_labels = self.post_processing(logits, profile.shape[1], output_format) return results, pse_labels