import torch import numpy as np class BatchSampler(torch.utils.data.BatchSampler): def __init__(self, dataset, batch_type: str="example", batch_size: int=100, sort_size: int=30, drop_last: bool=False, shuffle: bool=True, **kwargs): self.drop_last = drop_last self.pre_idx = -1 self.dataset = dataset self.total_samples = len(dataset) # self.batch_type = args.batch_type # self.batch_size = args.batch_size # self.sort_size = args.sort_size # self.max_length_token = args.max_length_token self.batch_type = batch_type self.batch_size = batch_size self.sort_size = sort_size self.max_length_token = kwargs.get("max_length_token", 5000) self.shuffle_idx = np.arange(self.total_samples) self.shuffle = shuffle def __len__(self): return self.total_samples def __iter__(self): # print("in sampler") if self.shuffle: np.random.shuffle(self.shuffle_idx) batch = [] max_token = 0 num_sample = 0 iter_num = (self.total_samples-1) // self.sort_size + 1 # print("iter_num: ", iter_num) for iter in range(self.pre_idx + 1, iter_num): datalen_with_index = [] for i in range(self.sort_size): idx = iter * self.sort_size + i if idx >= self.total_samples: continue idx_map = self.shuffle_idx[idx] # prompt = self.dataset.indexed_dataset[idx_map]["prompt"] sample_len_cur = self.dataset.indexed_dataset.get_source_len(self.dataset.indexed_dataset[idx_map]) + \ self.dataset.indexed_dataset.get_target_len(self.dataset.indexed_dataset[idx_map]) datalen_with_index.append([idx, sample_len_cur]) datalen_with_index_sort = sorted(datalen_with_index, key=lambda x: x[1]) for item in datalen_with_index_sort: idx, sample_len_cur_raw = item if sample_len_cur_raw > self.max_length_token: continue max_token_cur = max(max_token, sample_len_cur_raw) max_token_padding = 1 + num_sample if self.batch_type == 'token': max_token_padding *= max_token_cur if max_token_padding <= self.batch_size: batch.append(idx) max_token = max_token_cur num_sample += 1 else: yield batch batch = [idx] max_token = sample_len_cur_raw num_sample = 1