import argparse import logging import os import sys import json from pathlib import Path from typing import Any from typing import List from typing import Optional from typing import Sequence from typing import Tuple from typing import Union from typing import Dict import math import numpy as np import torch from typeguard import check_argument_types from typeguard import check_return_type from funasr.fileio.datadir_writer import DatadirWriter from funasr.modules.scorers.scorer_interface import BatchScorerInterface from funasr.modules.subsampling import TooShortUttError from funasr.tasks.vad import VADTask from funasr.torch_utils.device_funcs import to_device from funasr.torch_utils.set_all_random_seed import set_all_random_seed from funasr.utils import config_argparse from funasr.utils.cli_utils import get_commandline_args from funasr.utils.types import str2bool from funasr.utils.types import str2triple_str from funasr.utils.types import str_or_none from funasr.utils import asr_utils, wav_utils, postprocess_utils from funasr.models.frontend.wav_frontend import WavFrontend header_colors = '\033[95m' end_colors = '\033[0m' global_asr_language: str = 'zh-cn' global_sample_rate: Union[int, Dict[Any, int]] = { 'audio_fs': 16000, 'model_fs': 16000 } class Speech2VadSegment: """Speech2VadSegment class Examples: >>> import soundfile >>> speech2segment = Speech2VadSegment("vad_config.yml", "vad.pt") >>> audio, rate = soundfile.read("speech.wav") >>> speech2segment(audio) [[10, 230], [245, 450], ...] """ def __init__( self, vad_infer_config: Union[Path, str] = None, vad_model_file: Union[Path, str] = None, vad_cmvn_file: Union[Path, str] = None, device: str = "cpu", batch_size: int = 1, dtype: str = "float32", **kwargs, ): assert check_argument_types() # 1. Build vad model vad_model, vad_infer_args = VADTask.build_model_from_file( vad_infer_config, vad_model_file, device ) frontend = None if vad_infer_args.frontend is not None: frontend = WavFrontend(cmvn_file=vad_cmvn_file, **vad_infer_args.frontend_conf) logging.info("vad_model: {}".format(vad_model)) logging.info("vad_infer_args: {}".format(vad_infer_args)) vad_model.to(dtype=getattr(torch, dtype)).eval() self.vad_model = vad_model self.vad_infer_args = vad_infer_args self.device = device self.dtype = dtype self.frontend = frontend self.batch_size = batch_size @torch.no_grad() def __call__( self, speech: Union[torch.Tensor, np.ndarray], speech_lengths: Union[torch.Tensor, np.ndarray] = None, in_cache: Dict[str, torch.Tensor] = dict() ) -> Tuple[List[List[int]], Dict[str, torch.Tensor]]: """Inference Args: speech: Input speech data Returns: text, token, token_int, hyp """ assert check_argument_types() # Input as audio signal if isinstance(speech, np.ndarray): speech = torch.tensor(speech) if self.frontend is not None: self.frontend.filter_length_max = math.inf fbanks, fbanks_len = self.frontend.forward_fbank(speech, speech_lengths) feats, feats_len = self.frontend.forward_lfr_cmvn(fbanks, fbanks_len) fbanks = to_device(fbanks, device=self.device) feats = to_device(feats, device=self.device) feats_len = feats_len.int() else: raise Exception("Need to extract feats first, please configure frontend configuration") # b. Forward Encoder streaming t_offset = 0 step = min(feats_len.max(), 6000) segments = [[]] * self.batch_size for t_offset in range(0, feats_len, min(step, feats_len - t_offset)): if t_offset + step >= feats_len - 1: step = feats_len - t_offset is_final = True else: is_final = False batch = { "feats": feats[:, t_offset:t_offset + step, :], "waveform": speech[:, t_offset * 160:min(speech.shape[-1], (t_offset + step - 1) * 160 + 400)], "is_final": is_final, "in_cache": in_cache } # a. To device batch = to_device(batch, device=self.device) segments_part, in_cache = self.vad_model(**batch) if segments_part: for batch_num in range(0, self.batch_size): segments[batch_num] += segments_part[batch_num] return fbanks, segments def inference( batch_size: int, ngpu: int, log_level: Union[int, str], data_path_and_name_and_type, vad_infer_config: Optional[str], vad_model_file: Optional[str], vad_cmvn_file: Optional[str] = None, raw_inputs: Union[np.ndarray, torch.Tensor] = None, key_file: Optional[str] = None, allow_variable_data_keys: bool = False, output_dir: Optional[str] = None, dtype: str = "float32", seed: int = 0, num_workers: int = 1, **kwargs, ): inference_pipeline = inference_modelscope( batch_size=batch_size, ngpu=ngpu, log_level=log_level, vad_infer_config=vad_infer_config, vad_model_file=vad_model_file, vad_cmvn_file=vad_cmvn_file, key_file=key_file, allow_variable_data_keys=allow_variable_data_keys, output_dir=output_dir, dtype=dtype, seed=seed, num_workers=num_workers, **kwargs, ) return inference_pipeline(data_path_and_name_and_type, raw_inputs) def inference_modelscope( batch_size: int, ngpu: int, log_level: Union[int, str], # data_path_and_name_and_type, vad_infer_config: Optional[str], vad_model_file: Optional[str], vad_cmvn_file: Optional[str] = None, # raw_inputs: Union[np.ndarray, torch.Tensor] = None, key_file: Optional[str] = None, allow_variable_data_keys: bool = False, output_dir: Optional[str] = None, dtype: str = "float32", seed: int = 0, num_workers: int = 1, **kwargs, ): assert check_argument_types() if batch_size > 1: raise NotImplementedError("batch decoding is not implemented") if ngpu > 1: raise NotImplementedError("only single GPU decoding is supported") logging.basicConfig( level=log_level, format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s", ) if ngpu >= 1 and torch.cuda.is_available(): device = "cuda" else: device = "cpu" # 1. Set random-seed set_all_random_seed(seed) # 2. Build speech2vadsegment speech2vadsegment_kwargs = dict( vad_infer_config=vad_infer_config, vad_model_file=vad_model_file, vad_cmvn_file=vad_cmvn_file, device=device, dtype=dtype, ) logging.info("speech2vadsegment_kwargs: {}".format(speech2vadsegment_kwargs)) speech2vadsegment = Speech2VadSegment(**speech2vadsegment_kwargs) def _forward( data_path_and_name_and_type, raw_inputs: Union[np.ndarray, torch.Tensor] = None, output_dir_v2: Optional[str] = None, fs: dict = None, param_dict: dict = None ): # 3. Build data-iterator if data_path_and_name_and_type is None and raw_inputs is not None: if isinstance(raw_inputs, torch.Tensor): raw_inputs = raw_inputs.numpy() data_path_and_name_and_type = [raw_inputs, "speech", "waveform"] loader = VADTask.build_streaming_iterator( data_path_and_name_and_type, dtype=dtype, batch_size=batch_size, key_file=key_file, num_workers=num_workers, preprocess_fn=VADTask.build_preprocess_fn(speech2vadsegment.vad_infer_args, False), collate_fn=VADTask.build_collate_fn(speech2vadsegment.vad_infer_args, False), allow_variable_data_keys=allow_variable_data_keys, inference=True, ) finish_count = 0 file_count = 1 # 7 .Start for-loop # FIXME(kamo): The output format should be discussed about output_path = output_dir_v2 if output_dir_v2 is not None else output_dir if output_path is not None: writer = DatadirWriter(output_path) ibest_writer = writer[f"1best_recog"] else: writer = None ibest_writer = None vad_results = [] for keys, batch in loader: assert isinstance(batch, dict), type(batch) assert all(isinstance(s, str) for s in keys), keys _bs = len(next(iter(batch.values()))) assert len(keys) == _bs, f"{len(keys)} != {_bs}" # do vad segment _, results = speech2vadsegment(**batch) for i, _ in enumerate(keys): if "MODELSCOPE_ENVIRONMENT" in os.environ and os.environ["MODELSCOPE_ENVIRONMENT"] == "eas": results[i] = json.dumps(results[i]) item = {'key': keys[i], 'value': results[i]} vad_results.append(item) if writer is not None: results[i] = json.loads(results[i]) ibest_writer["text"][keys[i]] = "{}".format(results[i]) return vad_results return _forward def get_parser(): parser = config_argparse.ArgumentParser( description="VAD Decoding", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) # Note(kamo): Use '_' instead of '-' as separator. # '-' is confusing if written in yaml. parser.add_argument( "--log_level", type=lambda x: x.upper(), default="INFO", choices=("CRITICAL", "ERROR", "WARNING", "INFO", "DEBUG", "NOTSET"), help="The verbose level of logging", ) parser.add_argument("--output_dir", type=str, required=False) parser.add_argument( "--ngpu", type=int, default=0, help="The number of gpus. 0 indicates CPU mode", ) parser.add_argument( "--gpuid_list", type=str, default="", help="The visible gpus", ) parser.add_argument("--seed", type=int, default=0, help="Random seed") parser.add_argument( "--dtype", default="float32", choices=["float16", "float32", "float64"], help="Data type", ) parser.add_argument( "--num_workers", type=int, default=1, help="The number of workers used for DataLoader", ) group = parser.add_argument_group("Input data related") group.add_argument( "--data_path_and_name_and_type", type=str2triple_str, required=False, action="append", ) group.add_argument("--raw_inputs", type=list, default=None) # example=[{'key':'EdevDEWdIYQ_0021','file':'/mnt/data/jiangyu.xzy/test_data/speech_io/SPEECHIO_ASR_ZH00007_zhibodaihuo/wav/EdevDEWdIYQ_0021.wav'}]) group.add_argument("--key_file", type=str_or_none) group.add_argument("--allow_variable_data_keys", type=str2bool, default=False) group = parser.add_argument_group("The model configuration related") group.add_argument( "--vad_infer_config", type=str, help="VAD infer configuration", ) group.add_argument( "--vad_model_file", type=str, help="VAD model parameter file", ) group.add_argument( "--vad_cmvn_file", type=str, help="Global cmvn file", ) group = parser.add_argument_group("infer related") group.add_argument( "--batch_size", type=int, default=1, help="The batch size for inference", ) return parser def main(cmd=None): print(get_commandline_args(), file=sys.stderr) parser = get_parser() args = parser.parse_args(cmd) kwargs = vars(args) kwargs.pop("config", None) inference(**kwargs) if __name__ == "__main__": main()