#!/usr/bin/env python3 # Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved. # MIT License (https://opensource.org/licenses/MIT) import argparse import logging import os import sys from pathlib import Path from typing import Any from typing import List from typing import Optional from typing import Sequence from typing import Tuple from typing import Union import numpy as np import torch from kaldiio import WriteHelper from typeguard import check_argument_types from typeguard import check_return_type from funasr.utils.cli_utils import get_commandline_args from funasr.tasks.sv import SVTask from funasr.tasks.asr import ASRTask from funasr.torch_utils.device_funcs import to_device from funasr.torch_utils.set_all_random_seed import set_all_random_seed from funasr.utils import config_argparse from funasr.utils.types import str2bool from funasr.utils.types import str2triple_str from funasr.utils.types import str_or_none from funasr.utils.misc import statistic_model_parameters class Speech2Xvector: """Speech2Xvector class Examples: >>> import soundfile >>> speech2xvector = Speech2Xvector("sv_config.yml", "sv.pb") >>> audio, rate = soundfile.read("speech.wav") >>> speech2xvector(audio) [(text, token, token_int, hypothesis object), ...] """ def __init__( self, sv_train_config: Union[Path, str] = None, sv_model_file: Union[Path, str] = None, device: str = "cpu", batch_size: int = 1, dtype: str = "float32", streaming: bool = False, embedding_node: str = "resnet1_dense", ): assert check_argument_types() # TODO: 1. Build SV model sv_model, sv_train_args = SVTask.build_model_from_file( config_file=sv_train_config, model_file=sv_model_file, device=device ) logging.info("sv_model: {}".format(sv_model)) logging.info("model parameter number: {}".format(statistic_model_parameters(sv_model))) logging.info("sv_train_args: {}".format(sv_train_args)) sv_model.to(dtype=getattr(torch, dtype)).eval() self.sv_model = sv_model self.sv_train_args = sv_train_args self.device = device self.dtype = dtype self.embedding_node = embedding_node @torch.no_grad() def calculate_embedding(self, speech: Union[torch.Tensor, np.ndarray]) -> torch.Tensor: # Input as audio signal if isinstance(speech, np.ndarray): speech = torch.tensor(speech) # data: (Nsamples,) -> (1, Nsamples) speech = speech.unsqueeze(0).to(getattr(torch, self.dtype)) # lengths: (1,) lengths = speech.new_full([1], dtype=torch.long, fill_value=speech.size(1)) batch = {"speech": speech, "speech_lengths": lengths} # a. To device batch = to_device(batch, device=self.device) # b. Forward Encoder enc, ilens = self.sv_model.encode(**batch) # c. Forward Pooling pooling = self.sv_model.pooling_layer(enc) # d. Forward Decoder outputs, embeddings = self.sv_model.decoder(pooling) if self.embedding_node not in embeddings: raise ValueError("Required embedding node {} not in {}".format( self.embedding_node, embeddings.keys())) return embeddings[self.embedding_node] @torch.no_grad() def __call__( self, speech: Union[torch.Tensor, np.ndarray], ref_speech: Optional[Union[torch.Tensor, np.ndarray]] = None, ) -> Tuple[torch.Tensor, Union[torch.Tensor, None], Union[torch.Tensor, None]]: """Inference Args: speech: Input speech data ref_speech: Reference speech to compare Returns: embedding, ref_embedding, similarity_score """ assert check_argument_types() self.sv_model.eval() embedding = self.calculate_embedding(speech) ref_emb, score = None, None if ref_speech is not None: ref_emb = self.calculate_embedding(ref_speech) score = torch.cosine_similarity(embedding, ref_emb) results = (embedding, ref_emb, score) assert check_return_type(results) return results @staticmethod def from_pretrained( model_tag: Optional[str] = None, **kwargs: Optional[Any], ): """Build Speech2Xvector instance from the pretrained model. Args: model_tag (Optional[str]): Model tag of the pretrained models. Currently, the tags of espnet_model_zoo are supported. Returns: Speech2Xvector: Speech2Xvector instance. """ if model_tag is not None: try: from espnet_model_zoo.downloader import ModelDownloader except ImportError: logging.error( "`espnet_model_zoo` is not installed. " "Please install via `pip install -U espnet_model_zoo`." ) raise d = ModelDownloader() kwargs.update(**d.download_and_unpack(model_tag)) return Speech2Xvector(**kwargs) def inference_modelscope( output_dir: Optional[str] = None, batch_size: int = 1, dtype: str = "float32", ngpu: int = 1, seed: int = 0, num_workers: int = 0, log_level: Union[int, str] = "INFO", key_file: Optional[str] = None, sv_train_config: Optional[str] = "sv.yaml", sv_model_file: Optional[str] = "sv.pb", model_tag: Optional[str] = None, allow_variable_data_keys: bool = True, streaming: bool = False, embedding_node: str = "resnet1_dense", sv_threshold: float = 0.9465, param_dict: Optional[dict] = None, **kwargs, ): assert check_argument_types() if batch_size > 1: raise NotImplementedError("batch decoding is not implemented") if ngpu > 1: raise NotImplementedError("only single GPU decoding is supported") logging.basicConfig( level=log_level, format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s", ) logging.info("param_dict: {}".format(param_dict)) if ngpu >= 1 and torch.cuda.is_available(): device = "cuda" else: device = "cpu" # 1. Set random-seed set_all_random_seed(seed) # 2. Build speech2xvector speech2xvector_kwargs = dict( sv_train_config=sv_train_config, sv_model_file=sv_model_file, device=device, dtype=dtype, streaming=streaming, embedding_node=embedding_node ) logging.info("speech2xvector_kwargs: {}".format(speech2xvector_kwargs)) speech2xvector = Speech2Xvector.from_pretrained( model_tag=model_tag, **speech2xvector_kwargs, ) speech2xvector.sv_model.eval() def _forward( data_path_and_name_and_type: Sequence[Tuple[str, str, str]] = None, raw_inputs: Union[np.ndarray, torch.Tensor] = None, output_dir_v2: Optional[str] = None, param_dict: Optional[dict] = None, ): logging.info("param_dict: {}".format(param_dict)) if data_path_and_name_and_type is None and raw_inputs is not None: if isinstance(raw_inputs, torch.Tensor): raw_inputs = raw_inputs.numpy() data_path_and_name_and_type = [raw_inputs, "speech", "waveform"] # 3. Build data-iterator loader = ASRTask.build_streaming_iterator( data_path_and_name_and_type, dtype=dtype, batch_size=batch_size, key_file=key_file, num_workers=num_workers, preprocess_fn=None, collate_fn=None, allow_variable_data_keys=allow_variable_data_keys, inference=True, ) # 7 .Start for-loop output_path = output_dir_v2 if output_dir_v2 is not None else output_dir embd_writer, ref_embd_writer, score_writer = None, None, None if output_path is not None: os.makedirs(output_path, exist_ok=True) embd_writer = WriteHelper("ark,scp:{}/xvector.ark,{}/xvector.scp".format(output_path, output_path)) sv_result_list = [] for keys, batch in loader: assert isinstance(batch, dict), type(batch) assert all(isinstance(s, str) for s in keys), keys _bs = len(next(iter(batch.values()))) assert len(keys) == _bs, f"{len(keys)} != {_bs}" batch = {k: v[0] for k, v in batch.items() if not k.endswith("_lengths")} embedding, ref_embedding, score = speech2xvector(**batch) # Only supporting batch_size==1 key = keys[0] normalized_score = 0.0 if score is not None: score = score.item() normalized_score = max(score - sv_threshold, 0.0) / (1.0 - sv_threshold) * 100.0 item = {"key": key, "value": normalized_score} else: item = {"key": key, "value": embedding.squeeze(0).cpu().numpy()} sv_result_list.append(item) if output_path is not None: embd_writer(key, embedding[0].cpu().numpy()) if ref_embedding is not None: if ref_embd_writer is None: ref_embd_writer = WriteHelper( "ark,scp:{}/ref_xvector.ark,{}/ref_xvector.scp".format(output_path, output_path) ) score_writer = open(os.path.join(output_path, "score.txt"), "w") ref_embd_writer(key, ref_embedding[0].cpu().numpy()) score_writer.write("{} {:.6f}\n".format(key, normalized_score)) if output_path is not None: embd_writer.close() if ref_embd_writer is not None: ref_embd_writer.close() score_writer.close() return sv_result_list return _forward def inference( output_dir: Optional[str], batch_size: int, dtype: str, ngpu: int, seed: int, num_workers: int, log_level: Union[int, str], data_path_and_name_and_type: Sequence[Tuple[str, str, str]], key_file: Optional[str], sv_train_config: Optional[str], sv_model_file: Optional[str], model_tag: Optional[str], allow_variable_data_keys: bool = True, streaming: bool = False, embedding_node: str = "resnet1_dense", sv_threshold: float = 0.9465, **kwargs, ): inference_pipeline = inference_modelscope( output_dir=output_dir, batch_size=batch_size, dtype=dtype, ngpu=ngpu, seed=seed, num_workers=num_workers, log_level=log_level, key_file=key_file, sv_train_config=sv_train_config, sv_model_file=sv_model_file, model_tag=model_tag, allow_variable_data_keys=allow_variable_data_keys, streaming=streaming, embedding_node=embedding_node, sv_threshold=sv_threshold, **kwargs, ) return inference_pipeline(data_path_and_name_and_type, raw_inputs=None) def get_parser(): parser = config_argparse.ArgumentParser( description="Speaker verification/x-vector extraction", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) # Note(kamo): Use '_' instead of '-' as separator. # '-' is confusing if written in yaml. parser.add_argument( "--log_level", type=lambda x: x.upper(), default="INFO", choices=("CRITICAL", "ERROR", "WARNING", "INFO", "DEBUG", "NOTSET"), help="The verbose level of logging", ) parser.add_argument("--output_dir", type=str, required=False) parser.add_argument( "--ngpu", type=int, default=0, help="The number of gpus. 0 indicates CPU mode", ) parser.add_argument( "--gpuid_list", type=str, default="", help="The visible gpus", ) parser.add_argument("--seed", type=int, default=0, help="Random seed") parser.add_argument( "--dtype", default="float32", choices=["float16", "float32", "float64"], help="Data type", ) parser.add_argument( "--num_workers", type=int, default=1, help="The number of workers used for DataLoader", ) group = parser.add_argument_group("Input data related") group.add_argument( "--data_path_and_name_and_type", type=str2triple_str, required=False, action="append", ) group.add_argument("--key_file", type=str_or_none) group.add_argument("--allow_variable_data_keys", type=str2bool, default=False) group = parser.add_argument_group("The model configuration related") group.add_argument( "--sv_train_config", type=str, help="SV training configuration", ) group.add_argument( "--sv_model_file", type=str, help="SV model parameter file", ) group.add_argument( "--sv_threshold", type=float, default=0.9465, help="The threshold for verification" ) group.add_argument( "--model_tag", type=str, help="Pretrained model tag. If specify this option, *_train_config and " "*_file will be overwritten", ) parser.add_argument( "--batch_size", type=int, default=1, help="The batch size for inference", ) parser.add_argument("--streaming", type=str2bool, default=False) parser.add_argument("--embedding_node", type=str, default="resnet1_dense") return parser def main(cmd=None): print(get_commandline_args(), file=sys.stderr) parser = get_parser() args = parser.parse_args(cmd) kwargs = vars(args) kwargs.pop("config", None) logging.info("args: {}".format(kwargs)) if args.output_dir is None: jobid, n_gpu = 1, 1 gpuid = args.gpuid_list.split(",")[jobid-1] else: jobid = int(args.output_dir.split(".")[-1]) n_gpu = len(args.gpuid_list.split(",")) gpuid = args.gpuid_list.split(",")[(jobid - 1) % n_gpu] os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"] = gpuid results_list = inference(**kwargs) for results in results_list: print("{} {}".format(results["key"], results["value"])) if __name__ == "__main__": main()