import onnxruntime import numpy as np if __name__ == '__main__': onnx_path = "./export/damo/punc_ct-transformer_zh-cn-common-vad_realtime-vocab272727/model.onnx" sess = onnxruntime.InferenceSession(onnx_path) input_name = [nd.name for nd in sess.get_inputs()] output_name = [nd.name for nd in sess.get_outputs()] def _get_feed_dict(text_length): return {'inputs': np.ones((1, text_length), dtype=np.int64), 'text_lengths': np.array([text_length,], dtype=np.int32), 'vad_masks': np.ones((1, 1, text_length, text_length), dtype=np.float32), 'sub_masks': np.ones((1, 1, text_length, text_length), dtype=np.float32), } def _run(feed_dict): output = sess.run(output_name, input_feed=feed_dict) for name, value in zip(output_name, output): print('{}: {}'.format(name, value)) _run(_get_feed_dict(10))