# -*- encoding: utf-8 -*- import os.path from pathlib import Path from typing import List, Union, Tuple import copy import librosa import numpy as np from .utils.utils import (ONNXRuntimeError, OrtInferSession, get_logger, read_yaml) from .utils.frontend import WavFrontend from .utils.e2e_vad import E2EVadModel logging = get_logger() class Fsmn_vad(): def __init__(self, model_dir: Union[str, Path] = None, batch_size: int = 1, device_id: Union[str, int] = "-1", quantize: bool = False, intra_op_num_threads: int = 4, max_end_sil: int = None, ): if not Path(model_dir).exists(): raise FileNotFoundError(f'{model_dir} does not exist.') model_file = os.path.join(model_dir, 'model.onnx') if quantize: model_file = os.path.join(model_dir, 'model_quant.onnx') config_file = os.path.join(model_dir, 'vad.yaml') cmvn_file = os.path.join(model_dir, 'vad.mvn') config = read_yaml(config_file) self.frontend = WavFrontend( cmvn_file=cmvn_file, **config['frontend_conf'] ) self.ort_infer = OrtInferSession(model_file, device_id, intra_op_num_threads=intra_op_num_threads) self.batch_size = batch_size self.vad_scorer = E2EVadModel(config["vad_post_conf"]) self.max_end_sil = max_end_sil if max_end_sil is not None else config["vad_post_conf"]["max_end_silence_time"] self.encoder_conf = config["encoder_conf"] def prepare_cache(self, in_cache: list = []): if len(in_cache) > 0: return in_cache fsmn_layers = self.encoder_conf["fsmn_layers"] proj_dim = self.encoder_conf["proj_dim"] lorder = self.encoder_conf["lorder"] for i in range(fsmn_layers): cache = np.zeros((1, proj_dim, lorder-1, 1)).astype(np.float32) in_cache.append(cache) return in_cache def __call__(self, audio_in: Union[str, np.ndarray, List[str]], **kwargs) -> List: # waveform_list = self.load_data(audio_in, self.frontend.opts.frame_opts.samp_freq) param_dict = kwargs.get('param_dict', dict()) is_final = param_dict.get('is_final', False) audio_in_cache = param_dict.get('audio_in_cache', None) audio_in_cum = audio_in if audio_in_cache is not None: audio_in_cum = np.concatenate((audio_in_cache, audio_in_cum)) param_dict['audio_in_cache'] = audio_in_cum feats, feats_len = self.extract_feat([audio_in_cum]) in_cache = param_dict.get('in_cache', list()) in_cache = self.prepare_cache(in_cache) beg_idx = param_dict.get('beg_idx',0) feats = feats[:, beg_idx:beg_idx+8, :] param_dict['beg_idx'] = beg_idx + feats.shape[1] try: inputs = [feats] inputs.extend(in_cache) scores, out_caches = self.infer(inputs) param_dict['in_cache'] = out_caches segments = self.vad_scorer(scores, audio_in[None, :], is_final=is_final, max_end_sil=self.max_end_sil) # print(segments) if len(segments) == 1 and segments[0][0][1] != -1: self.frontend.reset_status() except ONNXRuntimeError: logging.warning(traceback.format_exc()) logging.warning("input wav is silence or noise") segments = [] return segments def load_data(self, wav_content: Union[str, np.ndarray, List[str]], fs: int = None) -> List: def load_wav(path: str) -> np.ndarray: waveform, _ = librosa.load(path, sr=fs) return waveform if isinstance(wav_content, np.ndarray): return [wav_content] if isinstance(wav_content, str): return [load_wav(wav_content)] if isinstance(wav_content, list): return [load_wav(path) for path in wav_content] raise TypeError( f'The type of {wav_content} is not in [str, np.ndarray, list]') def extract_feat(self, waveform_list: List[np.ndarray] ) -> Tuple[np.ndarray, np.ndarray]: feats, feats_len = [], [] for waveform in waveform_list: speech, _ = self.frontend.fbank(waveform) feat, feat_len = self.frontend.lfr_cmvn(speech) feats.append(feat) feats_len.append(feat_len) feats = self.pad_feats(feats, np.max(feats_len)) feats_len = np.array(feats_len).astype(np.int32) return feats, feats_len @staticmethod def pad_feats(feats: List[np.ndarray], max_feat_len: int) -> np.ndarray: def pad_feat(feat: np.ndarray, cur_len: int) -> np.ndarray: pad_width = ((0, max_feat_len - cur_len), (0, 0)) return np.pad(feat, pad_width, 'constant', constant_values=0) feat_res = [pad_feat(feat, feat.shape[0]) for feat in feats] feats = np.array(feat_res).astype(np.float32) return feats def infer(self, feats: List) -> Tuple[np.ndarray, np.ndarray]: outputs = self.ort_infer(feats) scores, out_caches = outputs[0], outputs[1:] return scores, out_caches