import grpc from concurrent import futures import argparse import paraformer_pb2_grpc from grpc_server import ASRServicer def serve(args): server = grpc.server(futures.ThreadPoolExecutor(max_workers=10), # interceptors=(AuthInterceptor('Bearer mysecrettoken'),) ) paraformer_pb2_grpc.add_ASRServicer_to_server( ASRServicer(args.user_allowed, args.model, args.sample_rate, args.backend, args.onnx_dir, vad_model=args.vad_model, punc_model=args.punc_model), server) port = "[::]:" + str(args.port) server.add_insecure_port(port) server.start() print("grpc server started!") server.wait_for_termination() if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--port", type=int, default=10095, required=True, help="grpc server port") parser.add_argument("--user_allowed", type=str, default="project1_user1|project1_user2|project2_user3", help="allowed user for grpc client") parser.add_argument("--model", type=str, default="damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch", help="model from modelscope") parser.add_argument("--vad_model", type=str, default="damo/speech_fsmn_vad_zh-cn-16k-common-pytorch", help="model from modelscope") parser.add_argument("--punc_model", type=str, default="", help="model from modelscope") parser.add_argument("--sample_rate", type=int, default=16000, help="audio sample_rate from client") parser.add_argument("--backend", type=str, default="pipeline", choices=("pipeline", "onnxruntime"), help="backend, optional modelscope pipeline or onnxruntime") parser.add_argument("--onnx_dir", type=str, default="/nfs/models/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch", help="onnx model dir") args = parser.parse_args() serve(args)