# ResNet34 Result ## Training Config - Feature info: using 80 dims fbank, no cmvn, speed perturb(0.9, 1.0, 1.1) - Train info: lr 1e-4, batch_size 64, 1 gpu(Tesla V100), acc_grad 1, 300000 steps, clip_gradient_norm 3.0, weight_l2_regularizer 0.01 - Loss info: additive angular margin softmax, feature_scaling_factor=8, margin 0.25 - Model info: ResNet34, global statistics pooling, Dense - Train config: conf/train_sv_resnet34.yaml - Model size: 5.60 M parameters ## Results (EER & minDCF) - Test set: Alimeeting-test, CN-Celeb-eval-speech | testset | EER(%) | minDCF | Threshold | |:---------------------:|:-------:|:-------:| :--------:| | Alimeeting-test | 1.45 | 0.0849 | 0.9666 | | CN-Celeb-eval-speech | 9.00 | 0.2936 | 0.9465 |