# -*- encoding: utf-8 -*- # Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved. # MIT License (https://opensource.org/licenses/MIT) import os.path from pathlib import Path from typing import List, Union, Tuple import copy import librosa import numpy as np from .utils.utils import (CharTokenizer, Hypothesis, ONNXRuntimeError, OrtInferSession, TokenIDConverter, get_logger, read_yaml) from .utils.postprocess_utils import (sentence_postprocess, sentence_postprocess_sentencepiece) from .utils.frontend import WavFrontend from .utils.timestamp_utils import time_stamp_lfr6_onnx from .utils.utils import pad_list logging = get_logger() class Paraformer(): """ Author: Speech Lab of DAMO Academy, Alibaba Group Paraformer: Fast and Accurate Parallel Transformer for Non-autoregressive End-to-End Speech Recognition https://arxiv.org/abs/2206.08317 """ def __init__(self, model_dir: Union[str, Path] = None, batch_size: int = 1, device_id: Union[str, int] = "-1", plot_timestamp_to: str = "", quantize: bool = False, intra_op_num_threads: int = 4, cache_dir: str = None ): if not Path(model_dir).exists(): try: from modelscope.hub.snapshot_download import snapshot_download except: raise "You are exporting model from modelscope, please install modelscope and try it again. To install modelscope, you could:\n" \ "\npip3 install -U modelscope\n" \ "For the users in China, you could install with the command:\n" \ "\npip3 install -U modelscope -i https://mirror.sjtu.edu.cn/pypi/web/simple" try: model_dir = snapshot_download(model_dir, cache_dir=cache_dir) except: raise "model_dir must be model_name in modelscope or local path downloaded from modelscope, but is {}".format(model_dir) model_file = os.path.join(model_dir, 'model.onnx') if quantize: model_file = os.path.join(model_dir, 'model_quant.onnx') if not os.path.exists(model_file): print(".onnx is not exist, begin to export onnx") try: from funasr.export.export_model import ModelExport except: raise "You are exporting onnx, please install funasr and try it again. To install funasr, you could:\n" \ "\npip3 install -U funasr\n" \ "For the users in China, you could install with the command:\n" \ "\npip3 install -U funasr -i https://mirror.sjtu.edu.cn/pypi/web/simple" export_model = ModelExport( cache_dir=cache_dir, onnx=True, device="cpu", quant=quantize, ) export_model.export(model_dir) config_file = os.path.join(model_dir, 'config.yaml') cmvn_file = os.path.join(model_dir, 'am.mvn') config = read_yaml(config_file) self.converter = TokenIDConverter(config['token_list']) self.tokenizer = CharTokenizer() self.frontend = WavFrontend( cmvn_file=cmvn_file, **config['frontend_conf'] ) self.ort_infer = OrtInferSession(model_file, device_id, intra_op_num_threads=intra_op_num_threads) self.batch_size = batch_size self.plot_timestamp_to = plot_timestamp_to if "predictor_bias" in config['model_conf'].keys(): self.pred_bias = config['model_conf']['predictor_bias'] else: self.pred_bias = 0 if "lang" in config: self.language = config['lang'] else: self.language = None def __call__(self, wav_content: Union[str, np.ndarray, List[str]], **kwargs) -> List: waveform_list = self.load_data(wav_content, self.frontend.opts.frame_opts.samp_freq) waveform_nums = len(waveform_list) asr_res = [] for beg_idx in range(0, waveform_nums, self.batch_size): end_idx = min(waveform_nums, beg_idx + self.batch_size) feats, feats_len = self.extract_feat(waveform_list[beg_idx:end_idx]) try: outputs = self.infer(feats, feats_len) am_scores, valid_token_lens = outputs[0], outputs[1] if len(outputs) == 4: # for BiCifParaformer Inference us_alphas, us_peaks = outputs[2], outputs[3] else: us_alphas, us_peaks = None, None except ONNXRuntimeError: #logging.warning(traceback.format_exc()) logging.warning("input wav is silence or noise") preds = [''] else: preds = self.decode(am_scores, valid_token_lens) if us_peaks is None: for pred in preds: if self.language == "en-bpe": pred = sentence_postprocess_sentencepiece(pred) else: pred = sentence_postprocess(pred) asr_res.append({'preds': pred}) else: for pred, us_peaks_ in zip(preds, us_peaks): raw_tokens = pred timestamp, timestamp_raw = time_stamp_lfr6_onnx(us_peaks_, copy.copy(raw_tokens)) text_proc, timestamp_proc, _ = sentence_postprocess(raw_tokens, timestamp_raw) # logging.warning(timestamp) if len(self.plot_timestamp_to): self.plot_wave_timestamp(waveform_list[0], timestamp, self.plot_timestamp_to) asr_res.append({'preds': text_proc, 'timestamp': timestamp_proc, "raw_tokens": raw_tokens}) return asr_res def plot_wave_timestamp(self, wav, text_timestamp, dest): # TODO: Plot the wav and timestamp results with matplotlib import matplotlib matplotlib.use('Agg') matplotlib.rc("font", family='Alibaba PuHuiTi') # set it to a font that your system supports import matplotlib.pyplot as plt fig, ax1 = plt.subplots(figsize=(11, 3.5), dpi=320) ax2 = ax1.twinx() ax2.set_ylim([0, 2.0]) # plot waveform ax1.set_ylim([-0.3, 0.3]) time = np.arange(wav.shape[0]) / 16000 ax1.plot(time, wav/wav.max()*0.3, color='gray', alpha=0.4) # plot lines and text for (char, start, end) in text_timestamp: ax1.vlines(start, -0.3, 0.3, ls='--') ax1.vlines(end, -0.3, 0.3, ls='--') x_adj = 0.045 if char != '' else 0.12 ax1.text((start + end) * 0.5 - x_adj, 0, char) # plt.legend() plotname = "{}/timestamp.png".format(dest) plt.savefig(plotname, bbox_inches='tight') def load_data(self, wav_content: Union[str, np.ndarray, List[str]], fs: int = None) -> List: def load_wav(path: str) -> np.ndarray: waveform, _ = librosa.load(path, sr=fs) return waveform if isinstance(wav_content, np.ndarray): return [wav_content] if isinstance(wav_content, str): return [load_wav(wav_content)] if isinstance(wav_content, list): return [load_wav(path) for path in wav_content] raise TypeError( f'The type of {wav_content} is not in [str, np.ndarray, list]') def extract_feat(self, waveform_list: List[np.ndarray] ) -> Tuple[np.ndarray, np.ndarray]: feats, feats_len = [], [] for waveform in waveform_list: speech, _ = self.frontend.fbank(waveform) feat, feat_len = self.frontend.lfr_cmvn(speech) feats.append(feat) feats_len.append(feat_len) feats = self.pad_feats(feats, np.max(feats_len)) feats_len = np.array(feats_len).astype(np.int32) return feats, feats_len @staticmethod def pad_feats(feats: List[np.ndarray], max_feat_len: int) -> np.ndarray: def pad_feat(feat: np.ndarray, cur_len: int) -> np.ndarray: pad_width = ((0, max_feat_len - cur_len), (0, 0)) return np.pad(feat, pad_width, 'constant', constant_values=0) feat_res = [pad_feat(feat, feat.shape[0]) for feat in feats] feats = np.array(feat_res).astype(np.float32) return feats def infer(self, feats: np.ndarray, feats_len: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: outputs = self.ort_infer([feats, feats_len]) return outputs def decode(self, am_scores: np.ndarray, token_nums: int) -> List[str]: return [self.decode_one(am_score, token_num) for am_score, token_num in zip(am_scores, token_nums)] def decode_one(self, am_score: np.ndarray, valid_token_num: int) -> List[str]: yseq = am_score.argmax(axis=-1) score = am_score.max(axis=-1) score = np.sum(score, axis=-1) # pad with mask tokens to ensure compatibility with sos/eos tokens # asr_model.sos:1 asr_model.eos:2 yseq = np.array([1] + yseq.tolist() + [2]) hyp = Hypothesis(yseq=yseq, score=score) # remove sos/eos and get results last_pos = -1 token_int = hyp.yseq[1:last_pos].tolist() # remove blank symbol id, which is assumed to be 0 token_int = list(filter(lambda x: x not in (0, 2), token_int)) # Change integer-ids to tokens token = self.converter.ids2tokens(token_int) token = token[:valid_token_num-self.pred_bias] # texts = sentence_postprocess(token) return token class ContextualParaformer(Paraformer): """ Author: Speech Lab of DAMO Academy, Alibaba Group Paraformer: Fast and Accurate Parallel Transformer for Non-autoregressive End-to-End Speech Recognition https://arxiv.org/abs/2206.08317 """ def __init__(self, model_dir: Union[str, Path] = None, batch_size: int = 1, device_id: Union[str, int] = "-1", plot_timestamp_to: str = "", quantize: bool = False, intra_op_num_threads: int = 4, cache_dir: str = None ): if not Path(model_dir).exists(): try: from modelscope.hub.snapshot_download import snapshot_download except: raise "You are exporting model from modelscope, please install modelscope and try it again. To install modelscope, you could:\n" \ "\npip3 install -U modelscope\n" \ "For the users in China, you could install with the command:\n" \ "\npip3 install -U modelscope -i https://mirror.sjtu.edu.cn/pypi/web/simple" try: model_dir = snapshot_download(model_dir, cache_dir=cache_dir) except: raise "model_dir must be model_name in modelscope or local path downloaded from modelscope, but is {}".format(model_dir) if quantize: model_bb_file = os.path.join(model_dir, 'model_quant.onnx') model_eb_file = os.path.join(model_dir, 'model_eb_quant.onnx') else: model_bb_file = os.path.join(model_dir, 'model.onnx') model_eb_file = os.path.join(model_dir, 'model_eb.onnx') token_list_file = os.path.join(model_dir, 'tokens.txt') self.vocab = {} with open(Path(token_list_file), 'r') as fin: for i, line in enumerate(fin.readlines()): self.vocab[line.strip()] = i #if quantize: # model_file = os.path.join(model_dir, 'model_quant.onnx') #if not os.path.exists(model_file): # logging.error(".onnx model not exist, please export first.") config_file = os.path.join(model_dir, 'config.yaml') cmvn_file = os.path.join(model_dir, 'am.mvn') config = read_yaml(config_file) self.converter = TokenIDConverter(config['token_list']) self.tokenizer = CharTokenizer() self.frontend = WavFrontend( cmvn_file=cmvn_file, **config['frontend_conf'] ) self.ort_infer_bb = OrtInferSession(model_bb_file, device_id, intra_op_num_threads=intra_op_num_threads) self.ort_infer_eb = OrtInferSession(model_eb_file, device_id, intra_op_num_threads=intra_op_num_threads) self.batch_size = batch_size self.plot_timestamp_to = plot_timestamp_to if "predictor_bias" in config['model_conf'].keys(): self.pred_bias = config['model_conf']['predictor_bias'] else: self.pred_bias = 0 def __call__(self, wav_content: Union[str, np.ndarray, List[str]], hotwords: str, **kwargs) -> List: # make hotword list hotwords, hotwords_length = self.proc_hotword(hotwords) # import pdb; pdb.set_trace() [bias_embed] = self.eb_infer(hotwords, hotwords_length) # index from bias_embed bias_embed = bias_embed.transpose(1, 0, 2) _ind = np.arange(0, len(hotwords)).tolist() bias_embed = bias_embed[_ind, hotwords_length.tolist()] waveform_list = self.load_data(wav_content, self.frontend.opts.frame_opts.samp_freq) waveform_nums = len(waveform_list) asr_res = [] for beg_idx in range(0, waveform_nums, self.batch_size): end_idx = min(waveform_nums, beg_idx + self.batch_size) feats, feats_len = self.extract_feat(waveform_list[beg_idx:end_idx]) bias_embed = np.expand_dims(bias_embed, axis=0) bias_embed = np.repeat(bias_embed, feats.shape[0], axis=0) try: outputs = self.bb_infer(feats, feats_len, bias_embed) am_scores, valid_token_lens = outputs[0], outputs[1] except ONNXRuntimeError: #logging.warning(traceback.format_exc()) logging.warning("input wav is silence or noise") preds = [''] else: preds = self.decode(am_scores, valid_token_lens) for pred in preds: pred = sentence_postprocess(pred) asr_res.append({'preds': pred}) return asr_res def proc_hotword(self, hotwords): hotwords = hotwords.split(" ") hotwords_length = [len(i) - 1 for i in hotwords] hotwords_length.append(0) hotwords_length = np.array(hotwords_length) # hotwords.append('') def word_map(word): hotwords = [] for c in word: if c not in self.vocab.keys(): hotwords.append(8403) logging.warning("oov character {} found in hotword {}, replaced by ".format(c, word)) else: hotwords.append(self.vocab[c]) return np.array(hotwords) hotword_int = [word_map(i) for i in hotwords] # import pdb; pdb.set_trace() hotword_int.append(np.array([1])) hotwords = pad_list(hotword_int, pad_value=0, max_len=10) # import pdb; pdb.set_trace() return hotwords, hotwords_length def bb_infer(self, feats: np.ndarray, feats_len: np.ndarray, bias_embed) -> Tuple[np.ndarray, np.ndarray]: outputs = self.ort_infer_bb([feats, feats_len, bias_embed]) return outputs def eb_infer(self, hotwords, hotwords_length): outputs = self.ort_infer_eb([hotwords.astype(np.int32), hotwords_length.astype(np.int32)]) return outputs def decode(self, am_scores: np.ndarray, token_nums: int) -> List[str]: return [self.decode_one(am_score, token_num) for am_score, token_num in zip(am_scores, token_nums)] def decode_one(self, am_score: np.ndarray, valid_token_num: int) -> List[str]: yseq = am_score.argmax(axis=-1) score = am_score.max(axis=-1) score = np.sum(score, axis=-1) # pad with mask tokens to ensure compatibility with sos/eos tokens # asr_model.sos:1 asr_model.eos:2 yseq = np.array([1] + yseq.tolist() + [2]) hyp = Hypothesis(yseq=yseq, score=score) # remove sos/eos and get results last_pos = -1 token_int = hyp.yseq[1:last_pos].tolist() # remove blank symbol id, which is assumed to be 0 token_int = list(filter(lambda x: x not in (0, 2), token_int)) # Change integer-ids to tokens token = self.converter.ids2tokens(token_int) token = token[:valid_token_num-self.pred_bias] # texts = sentence_postprocess(token) return token