## Using funasr with libtorch [FunASR](https://github.com/alibaba-damo-academy/FunASR) hopes to build a bridge between academic research and industrial applications on speech recognition. By supporting the training & finetuning of the industrial-grade speech recognition model released on ModelScope, researchers and developers can conduct research and production of speech recognition models more conveniently, and promote the development of speech recognition ecology. ASR for Fun! ### Steps: 1. Export the model. - Command: (`Tips`: torch >= 1.11.0 is required.) More details ref to ([export docs](https://github.com/alibaba-damo-academy/FunASR/tree/main/funasr/export)) - `e.g.`, Export model from modelscope ```shell python -m funasr.export.export_model --model-name damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch --export-dir ./export --type torch --quantize False ``` - `e.g.`, Export model from local path, the model'name must be `model.pb`. ```shell python -m funasr.export.export_model --model-name ./damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch --export-dir ./export --type torch --quantize False ``` 2. Install the `funasr_torch`. install from pip ```shell pip install -U funasr_torch # For the users in China, you could install with the command: # pip install -U funasr_torch -i https://mirror.sjtu.edu.cn/pypi/web/simple ``` or install from source code ```shell git clone https://github.com/alibaba/FunASR.git && cd FunASR cd funasr/runtime/python/libtorch pip install -e ./ # For the users in China, you could install with the command: # pip install -e ./ -i https://mirror.sjtu.edu.cn/pypi/web/simple ``` 3. Run the demo. - Model_dir: the model path, which contains `model.torchscripts`, `config.yaml`, `am.mvn`. - Input: wav formt file, support formats: `str, np.ndarray, List[str]` - Output: `List[str]`: recognition result. - Example: ```python from funasr_torch import Paraformer model_dir = "/nfs/zhifu.gzf/export/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch" model = Paraformer(model_dir, batch_size=1) wav_path = ['/nfs/zhifu.gzf/export/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/example/asr_example.wav'] result = model(wav_path) print(result) ``` ## Performance benchmark Please ref to [benchmark](https://github.com/alibaba-damo-academy/FunASR/blob/main/funasr/runtime/python/benchmark_libtorch.md) ## Speed Environment:Intel(R) Xeon(R) Platinum 8163 CPU @ 2.50GHz Test [wav, 5.53s, 100 times avg.](https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav) | Backend | RTF (FP32) | |:--------:|:----------:| | Pytorch | 0.110 | | Libtorch | 0.048 | | Onnx | 0.038 | ## Acknowledge This project is maintained by [FunASR community](https://github.com/alibaba-damo-academy/FunASR).