import torch class BatchSampler(torch.utils.data.BatchSampler): def __init__(self, dataset=None, args=None, drop_last=True, ): self.drop_last = drop_last self.pre_idx = -1 self.dataset = dataset self.batch_size_type = args.batch_size_type self.batch_size = args.batch_size self.sort_size = args.sort_size self.max_length_token = args.max_length_token self.total_samples = len(dataset) def __len__(self): return self.total_samples def __iter__(self): batch = [] max_token = 0 num_sample = 0 iter_num = (self.total_samples-1) // self.sort_size + 1 for iter in range(self.pre_idx + 1, iter_num): datalen_with_index = [] for i in range(self.sort_size): idx = iter * self.sort_size + i if idx >= self.total_samples: continue if self.batch_size_type == "example": sample_len_cur = 1 else: idx_map = self.dataset.shuffle_idx[idx] # prompt = self.dataset.indexed_dataset[idx_map]["prompt"] sample_len_cur = self.dataset.indexed_dataset[idx_map]["source_len"] + \ self.dataset.indexed_dataset[idx_map]["target_len"] datalen_with_index.append([idx, sample_len_cur]) datalen_with_index_sort = sorted(datalen_with_index, key=lambda x: x[1]) for item in datalen_with_index_sort: idx, sample_len_cur = item if sample_len_cur > self.max_length_token: continue max_token_cur = max(max_token, sample_len_cur) max_token_padding = (1 + num_sample) * max_token_cur if max_token_padding <= self.batch_size: batch.append(idx) max_token = max_token_cur num_sample += 1 else: yield batch max_token = sample_len_cur num_sample = 1 batch = [idx]