# Speech Recognition ## Inference ### Quick start #### Paraformer model ```python from modelscope.pipelines import pipeline from modelscope.utils.constant import Tasks inference_pipeline = pipeline( task=Tasks.auto_speech_recognition, model='damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch', ) rec_result = inference_pipeline(audio_in='https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav') print(rec_result) ``` #### API-reference ##### define pipeline - `task`: `Tasks.auto_speech_recognition` - `model`: model name in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/modelscope_models.html#pretrained-models-on-modelscope), or model path in local disk - `ngpu`: 1 (Defalut), decoding on GPU. If ngpu=0, decoding on CPU - `ncpu`: 1 (Defalut), sets the number of threads used for intraop parallelism on CPU - `output_dir`: None (Defalut), the output path of results if set - `batch_size`: 1 (Defalut), batch size when decoding ##### infer pipeline - `audio_in`: the input to decode, which could be: - wav_path, `e.g.`: asr_example.wav, - pcm_path, `e.g.`: asr_example.pcm, - audio bytes stream, `e.g.`: bytes data from a microphone - audio sample point,`e.g.`: `audio, rate = soundfile.read("asr_example_zh.wav")`, the dtype is numpy.ndarray or torch.Tensor - wav.scp, kaldi style wav list (`wav_id \t wav_path``), `e.g.`: ```cat wav.scp asr_example1 ./audios/asr_example1.wav asr_example2 ./audios/asr_example2.wav ``` In this case of `wav.scp` input, `output_dir` must be set to save the output results - `audio_fs`: audio sampling rate, only set when audio_in is pcm audio #### Inference with you data #### Inference with multi-threads on CPU #### Inference with multi GPU ## Finetune with pipeline ### Quick start ### Finetune with your data ## Inference with your finetuned model