#!/usr/bin/env python3 # -*- coding: utf-8 -*- import torch from torch import nn import logging import numpy as np def sequence_mask(lengths, maxlen=None, dtype=torch.float32, device=None): if maxlen is None: maxlen = lengths.max() row_vector = torch.arange(0, maxlen, 1).to(lengths.device) matrix = torch.unsqueeze(lengths, dim=-1) mask = row_vector < matrix mask = mask.detach() return mask.type(dtype).to(device) if device is not None else mask.type(dtype) class CifPredictorV2(nn.Module): def __init__(self, model): super().__init__() self.pad = model.pad self.cif_conv1d = model.cif_conv1d self.cif_output = model.cif_output self.threshold = model.threshold self.smooth_factor = model.smooth_factor self.noise_threshold = model.noise_threshold self.tail_threshold = model.tail_threshold def forward(self, hidden: torch.Tensor, mask: torch.Tensor, ): h = hidden context = h.transpose(1, 2) queries = self.pad(context) output = torch.relu(self.cif_conv1d(queries)) output = output.transpose(1, 2) output = self.cif_output(output) alphas = torch.sigmoid(output) alphas = torch.nn.functional.relu(alphas * self.smooth_factor - self.noise_threshold) mask = mask.transpose(-1, -2).float() alphas = alphas * mask alphas = alphas.squeeze(-1) token_num = alphas.sum(-1) acoustic_embeds, cif_peak = cif(hidden, alphas, self.threshold) return acoustic_embeds, token_num, alphas, cif_peak def tail_process_fn(self, hidden, alphas, token_num=None, mask=None): b, t, d = hidden.size() tail_threshold = self.tail_threshold zeros_t = torch.zeros((b, 1), dtype=torch.float32, device=alphas.device) ones_t = torch.ones_like(zeros_t) mask_1 = torch.cat([mask, zeros_t], dim=1) mask_2 = torch.cat([ones_t, mask], dim=1) mask = mask_2 - mask_1 tail_threshold = mask * tail_threshold alphas = torch.cat([alphas, tail_threshold], dim=1) zeros = torch.zeros((b, 1, d), dtype=hidden.dtype).to(hidden.device) hidden = torch.cat([hidden, zeros], dim=1) token_num = alphas.sum(dim=-1) token_num_floor = torch.floor(token_num) return hidden, alphas, token_num_floor @torch.jit.script def cif(hidden, alphas, threshold: float): batch_size, len_time, hidden_size = hidden.size() threshold = torch.tensor([threshold], dtype=alphas.dtype).to(alphas.device) # loop varss integrate = torch.zeros([batch_size], device=hidden.device) frame = torch.zeros([batch_size, hidden_size], device=hidden.device) # intermediate vars along time list_fires = [] list_frames = [] for t in range(len_time): alpha = alphas[:, t] distribution_completion = torch.ones([batch_size], device=hidden.device) - integrate integrate += alpha list_fires.append(integrate) fire_place = integrate >= threshold integrate = torch.where(fire_place, integrate - torch.ones([batch_size], device=hidden.device), integrate) cur = torch.where(fire_place, distribution_completion, alpha) remainds = alpha - cur frame += cur[:, None] * hidden[:, t, :] list_frames.append(frame) frame = torch.where(fire_place[:, None].repeat(1, hidden_size), remainds[:, None] * hidden[:, t, :], frame) fires = torch.stack(list_fires, 1) frames = torch.stack(list_frames, 1) list_ls = [] len_labels = torch.round(alphas.sum(-1)).int() max_label_len = len_labels.max() for b in range(batch_size): fire = fires[b, :] l = torch.index_select(frames[b, :, :], 0, torch.nonzero(fire >= threshold).squeeze()) pad_l = torch.zeros([int(max_label_len - l.size(0)), int(hidden_size)], device=hidden.device) list_ls.append(torch.cat([l, pad_l], 0)) return torch.stack(list_ls, 0), fires