import os import logging from contextlib import contextmanager from distutils.version import LooseVersion from typing import Dict from typing import List from typing import Optional from typing import Tuple from typing import Union import tempfile import codecs import requests import re import copy import torch import torch.nn as nn import random import numpy as np import time # from funasr.layers.abs_normalize import AbsNormalize from funasr.losses.label_smoothing_loss import ( LabelSmoothingLoss, # noqa: H301 ) from funasr.models.paraformer.cif_predictor import mae_loss from funasr.models.transformer.utils.add_sos_eos import add_sos_eos from funasr.models.transformer.utils.nets_utils import make_pad_mask, pad_list from funasr.metrics.compute_acc import th_accuracy from funasr.train_utils.device_funcs import force_gatherable from funasr.models.paraformer.search import Hypothesis # from funasr.models.model_class_factory import * if LooseVersion(torch.__version__) >= LooseVersion("1.6.0"): from torch.cuda.amp import autocast else: # Nothing to do if torch<1.6.0 @contextmanager def autocast(enabled=True): yield from funasr.datasets.audio_datasets.load_audio_extract_fbank import load_audio, extract_fbank from funasr.utils import postprocess_utils from funasr.utils.datadir_writer import DatadirWriter from funasr.utils.timestamp_tools import ts_prediction_lfr6_standard from funasr.register import tables from funasr.models.ctc.ctc import CTC class Paraformer(nn.Module): """ Author: Speech Lab of DAMO Academy, Alibaba Group Paraformer: Fast and Accurate Parallel Transformer for Non-autoregressive End-to-End Speech Recognition https://arxiv.org/abs/2206.08317 """ def __init__( self, # token_list: Union[Tuple[str, ...], List[str]], frontend: Optional[str] = None, frontend_conf: Optional[Dict] = None, specaug: Optional[str] = None, specaug_conf: Optional[Dict] = None, normalize: str = None, normalize_conf: Optional[Dict] = None, encoder: str = None, encoder_conf: Optional[Dict] = None, decoder: str = None, decoder_conf: Optional[Dict] = None, ctc: str = None, ctc_conf: Optional[Dict] = None, predictor: str = None, predictor_conf: Optional[Dict] = None, ctc_weight: float = 0.5, input_size: int = 80, vocab_size: int = -1, ignore_id: int = -1, blank_id: int = 0, sos: int = 1, eos: int = 2, lsm_weight: float = 0.0, length_normalized_loss: bool = False, # report_cer: bool = True, # report_wer: bool = True, # sym_space: str = "", # sym_blank: str = "", # extract_feats_in_collect_stats: bool = True, # predictor=None, predictor_weight: float = 0.0, predictor_bias: int = 0, sampling_ratio: float = 0.2, share_embedding: bool = False, # preencoder: Optional[AbsPreEncoder] = None, # postencoder: Optional[AbsPostEncoder] = None, use_1st_decoder_loss: bool = False, **kwargs, ): super().__init__() # import pdb; # pdb.set_trace() if frontend is not None: frontend_class = tables.frontend_classes.get_class(frontend.lower()) frontend = frontend_class(**frontend_conf) if specaug is not None: specaug_class = tables.specaug_classes.get_class(specaug.lower()) specaug = specaug_class(**specaug_conf) if normalize is not None: normalize_class = tables.normalize_classes.get_class(normalize.lower()) normalize = normalize_class(**normalize_conf) encoder_class = tables.encoder_classes.get_class(encoder.lower()) encoder = encoder_class(input_size=input_size, **encoder_conf) encoder_output_size = encoder.output_size() if decoder is not None: decoder_class = tables.decoder_classes.get_class(decoder.lower()) decoder = decoder_class( vocab_size=vocab_size, encoder_output_size=encoder_output_size, **decoder_conf, ) if ctc_weight > 0.0: if ctc_conf is None: ctc_conf = {} ctc = CTC( odim=vocab_size, encoder_output_size=encoder_output_size, **ctc_conf ) if predictor is not None: predictor_class = tables.predictor_classes.get_class(predictor.lower()) predictor = predictor_class(**predictor_conf) # note that eos is the same as sos (equivalent ID) self.blank_id = blank_id self.sos = sos if sos is not None else vocab_size - 1 self.eos = eos if eos is not None else vocab_size - 1 self.vocab_size = vocab_size self.ignore_id = ignore_id self.ctc_weight = ctc_weight # self.token_list = token_list.copy() # self.frontend = frontend self.specaug = specaug self.normalize = normalize # self.preencoder = preencoder # self.postencoder = postencoder self.encoder = encoder # # if not hasattr(self.encoder, "interctc_use_conditioning"): # self.encoder.interctc_use_conditioning = False # if self.encoder.interctc_use_conditioning: # self.encoder.conditioning_layer = torch.nn.Linear( # vocab_size, self.encoder.output_size() # ) # # self.error_calculator = None # if ctc_weight == 1.0: self.decoder = None else: self.decoder = decoder self.criterion_att = LabelSmoothingLoss( size=vocab_size, padding_idx=ignore_id, smoothing=lsm_weight, normalize_length=length_normalized_loss, ) # # if report_cer or report_wer: # self.error_calculator = ErrorCalculator( # token_list, sym_space, sym_blank, report_cer, report_wer # ) # if ctc_weight == 0.0: self.ctc = None else: self.ctc = ctc # # self.extract_feats_in_collect_stats = extract_feats_in_collect_stats self.predictor = predictor self.predictor_weight = predictor_weight self.predictor_bias = predictor_bias self.sampling_ratio = sampling_ratio self.criterion_pre = mae_loss(normalize_length=length_normalized_loss) # self.step_cur = 0 # self.share_embedding = share_embedding if self.share_embedding: self.decoder.embed = None self.use_1st_decoder_loss = use_1st_decoder_loss self.length_normalized_loss = length_normalized_loss self.beam_search = None def forward( self, speech: torch.Tensor, speech_lengths: torch.Tensor, text: torch.Tensor, text_lengths: torch.Tensor, **kwargs, ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]: """Encoder + Decoder + Calc loss Args: speech: (Batch, Length, ...) speech_lengths: (Batch, ) text: (Batch, Length) text_lengths: (Batch,) """ # import pdb; # pdb.set_trace() if len(text_lengths.size()) > 1: text_lengths = text_lengths[:, 0] if len(speech_lengths.size()) > 1: speech_lengths = speech_lengths[:, 0] batch_size = speech.shape[0] # Encoder encoder_out, encoder_out_lens = self.encode(speech, speech_lengths) loss_ctc, cer_ctc = None, None loss_pre = None stats = dict() # decoder: CTC branch if self.ctc_weight != 0.0: loss_ctc, cer_ctc = self._calc_ctc_loss( encoder_out, encoder_out_lens, text, text_lengths ) # Collect CTC branch stats stats["loss_ctc"] = loss_ctc.detach() if loss_ctc is not None else None stats["cer_ctc"] = cer_ctc # decoder: Attention decoder branch loss_att, acc_att, cer_att, wer_att, loss_pre, pre_loss_att = self._calc_att_loss( encoder_out, encoder_out_lens, text, text_lengths ) # 3. CTC-Att loss definition if self.ctc_weight == 0.0: loss = loss_att + loss_pre * self.predictor_weight else: loss = self.ctc_weight * loss_ctc + (1 - self.ctc_weight) * loss_att + loss_pre * self.predictor_weight # Collect Attn branch stats stats["loss_att"] = loss_att.detach() if loss_att is not None else None stats["pre_loss_att"] = pre_loss_att.detach() if pre_loss_att is not None else None stats["acc"] = acc_att stats["cer"] = cer_att stats["wer"] = wer_att stats["loss_pre"] = loss_pre.detach().cpu() if loss_pre is not None else None stats["loss"] = torch.clone(loss.detach()) # force_gatherable: to-device and to-tensor if scalar for DataParallel if self.length_normalized_loss: batch_size = (text_lengths + self.predictor_bias).sum() loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device) return loss, stats, weight def encode( self, speech: torch.Tensor, speech_lengths: torch.Tensor, **kwargs, ) -> Tuple[torch.Tensor, torch.Tensor]: """Frontend + Encoder. Note that this method is used by asr_inference.py Args: speech: (Batch, Length, ...) speech_lengths: (Batch, ) ind: int """ with autocast(False): # Data augmentation if self.specaug is not None and self.training: speech, speech_lengths = self.specaug(speech, speech_lengths) # Normalization for feature: e.g. Global-CMVN, Utterance-CMVN if self.normalize is not None: speech, speech_lengths = self.normalize(speech, speech_lengths) # Forward encoder encoder_out, encoder_out_lens, _ = self.encoder(speech, speech_lengths) if isinstance(encoder_out, tuple): encoder_out = encoder_out[0] return encoder_out, encoder_out_lens def calc_predictor(self, encoder_out, encoder_out_lens): encoder_out_mask = (~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :]).to( encoder_out.device) pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index = self.predictor(encoder_out, None, encoder_out_mask, ignore_id=self.ignore_id) return pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index def cal_decoder_with_predictor(self, encoder_out, encoder_out_lens, sematic_embeds, ys_pad_lens): decoder_outs = self.decoder( encoder_out, encoder_out_lens, sematic_embeds, ys_pad_lens ) decoder_out = decoder_outs[0] decoder_out = torch.log_softmax(decoder_out, dim=-1) return decoder_out, ys_pad_lens def _calc_att_loss( self, encoder_out: torch.Tensor, encoder_out_lens: torch.Tensor, ys_pad: torch.Tensor, ys_pad_lens: torch.Tensor, ): encoder_out_mask = (~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :]).to( encoder_out.device) if self.predictor_bias == 1: _, ys_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id) ys_pad_lens = ys_pad_lens + self.predictor_bias pre_acoustic_embeds, pre_token_length, _, pre_peak_index = self.predictor(encoder_out, ys_pad, encoder_out_mask, ignore_id=self.ignore_id) # 0. sampler decoder_out_1st = None pre_loss_att = None if self.sampling_ratio > 0.0: sematic_embeds, decoder_out_1st = self.sampler(encoder_out, encoder_out_lens, ys_pad, ys_pad_lens, pre_acoustic_embeds) else: sematic_embeds = pre_acoustic_embeds # 1. Forward decoder decoder_outs = self.decoder( encoder_out, encoder_out_lens, sematic_embeds, ys_pad_lens ) decoder_out, _ = decoder_outs[0], decoder_outs[1] if decoder_out_1st is None: decoder_out_1st = decoder_out # 2. Compute attention loss loss_att = self.criterion_att(decoder_out, ys_pad) acc_att = th_accuracy( decoder_out_1st.view(-1, self.vocab_size), ys_pad, ignore_label=self.ignore_id, ) loss_pre = self.criterion_pre(ys_pad_lens.type_as(pre_token_length), pre_token_length) # Compute cer/wer using attention-decoder if self.training or self.error_calculator is None: cer_att, wer_att = None, None else: ys_hat = decoder_out_1st.argmax(dim=-1) cer_att, wer_att = self.error_calculator(ys_hat.cpu(), ys_pad.cpu()) return loss_att, acc_att, cer_att, wer_att, loss_pre, pre_loss_att def sampler(self, encoder_out, encoder_out_lens, ys_pad, ys_pad_lens, pre_acoustic_embeds): tgt_mask = (~make_pad_mask(ys_pad_lens, maxlen=ys_pad_lens.max())[:, :, None]).to(ys_pad.device) ys_pad_masked = ys_pad * tgt_mask[:, :, 0] if self.share_embedding: ys_pad_embed = self.decoder.output_layer.weight[ys_pad_masked] else: ys_pad_embed = self.decoder.embed(ys_pad_masked) with torch.no_grad(): decoder_outs = self.decoder( encoder_out, encoder_out_lens, pre_acoustic_embeds, ys_pad_lens ) decoder_out, _ = decoder_outs[0], decoder_outs[1] pred_tokens = decoder_out.argmax(-1) nonpad_positions = ys_pad.ne(self.ignore_id) seq_lens = (nonpad_positions).sum(1) same_num = ((pred_tokens == ys_pad) & nonpad_positions).sum(1) input_mask = torch.ones_like(nonpad_positions) bsz, seq_len = ys_pad.size() for li in range(bsz): target_num = (((seq_lens[li] - same_num[li].sum()).float()) * self.sampling_ratio).long() if target_num > 0: input_mask[li].scatter_(dim=0, index=torch.randperm(seq_lens[li])[:target_num].to(input_mask.device), value=0) input_mask = input_mask.eq(1) input_mask = input_mask.masked_fill(~nonpad_positions, False) input_mask_expand_dim = input_mask.unsqueeze(2).to(pre_acoustic_embeds.device) sematic_embeds = pre_acoustic_embeds.masked_fill(~input_mask_expand_dim, 0) + ys_pad_embed.masked_fill( input_mask_expand_dim, 0) return sematic_embeds * tgt_mask, decoder_out * tgt_mask def _calc_ctc_loss( self, encoder_out: torch.Tensor, encoder_out_lens: torch.Tensor, ys_pad: torch.Tensor, ys_pad_lens: torch.Tensor, ): # Calc CTC loss loss_ctc = self.ctc(encoder_out, encoder_out_lens, ys_pad, ys_pad_lens) # Calc CER using CTC cer_ctc = None if not self.training and self.error_calculator is not None: ys_hat = self.ctc.argmax(encoder_out).data cer_ctc = self.error_calculator(ys_hat.cpu(), ys_pad.cpu(), is_ctc=True) return loss_ctc, cer_ctc def init_beam_search(self, **kwargs, ): from funasr.models.paraformer.search import BeamSearchPara from funasr.models.transformer.scorers.ctc import CTCPrefixScorer from funasr.models.transformer.scorers.length_bonus import LengthBonus # 1. Build ASR model scorers = {} if self.ctc != None: ctc = CTCPrefixScorer(ctc=self.ctc, eos=self.eos) scorers.update( ctc=ctc ) token_list = kwargs.get("token_list") scorers.update( length_bonus=LengthBonus(len(token_list)), ) # 3. Build ngram model # ngram is not supported now ngram = None scorers["ngram"] = ngram weights = dict( decoder=1.0 - kwargs.get("decoding_ctc_weight"), ctc=kwargs.get("decoding_ctc_weight", 0.0), lm=kwargs.get("lm_weight", 0.0), ngram=kwargs.get("ngram_weight", 0.0), length_bonus=kwargs.get("penalty", 0.0), ) beam_search = BeamSearchPara( beam_size=kwargs.get("beam_size", 2), weights=weights, scorers=scorers, sos=self.sos, eos=self.eos, vocab_size=len(token_list), token_list=token_list, pre_beam_score_key=None if self.ctc_weight == 1.0 else "full", ) # beam_search.to(device=kwargs.get("device", "cpu"), dtype=getattr(torch, kwargs.get("dtype", "float32"))).eval() # for scorer in scorers.values(): # if isinstance(scorer, torch.nn.Module): # scorer.to(device=kwargs.get("device", "cpu"), dtype=getattr(torch, kwargs.get("dtype", "float32"))).eval() self.beam_search = beam_search def generate(self, data_in: list, data_lengths: list=None, key: list=None, tokenizer=None, **kwargs, ): # init beamsearch is_use_ctc = kwargs.get("decoding_ctc_weight", 0.0) > 0.00001 and self.ctc != None is_use_lm = kwargs.get("lm_weight", 0.0) > 0.00001 and kwargs.get("lm_file", None) is not None if self.beam_search is None and (is_use_lm or is_use_ctc): logging.info("enable beam_search") self.init_beam_search(**kwargs) self.nbest = kwargs.get("nbest", 1) meta_data = {} # extract fbank feats time1 = time.perf_counter() audio_sample_list = load_audio(data_in, fs=self.frontend.fs, audio_fs=kwargs.get("fs", 16000)) time2 = time.perf_counter() meta_data["load_data"] = f"{time2 - time1:0.3f}" speech, speech_lengths = extract_fbank(audio_sample_list, data_type=kwargs.get("data_type", "sound"), frontend=self.frontend) time3 = time.perf_counter() meta_data["extract_feat"] = f"{time3 - time2:0.3f}" meta_data["batch_data_time"] = speech_lengths.sum().item() * self.frontend.frame_shift * self.frontend.lfr_n / 1000 speech.to(device=kwargs["device"]), speech_lengths.to(device=kwargs["device"]) # Encoder encoder_out, encoder_out_lens = self.encode(speech, speech_lengths) if isinstance(encoder_out, tuple): encoder_out = encoder_out[0] # predictor predictor_outs = self.calc_predictor(encoder_out, encoder_out_lens) pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index = predictor_outs[0], predictor_outs[1], \ predictor_outs[2], predictor_outs[3] pre_token_length = pre_token_length.round().long() if torch.max(pre_token_length) < 1: return [] decoder_outs = self.cal_decoder_with_predictor(encoder_out, encoder_out_lens, pre_acoustic_embeds, pre_token_length) decoder_out, ys_pad_lens = decoder_outs[0], decoder_outs[1] results = [] b, n, d = decoder_out.size() for i in range(b): x = encoder_out[i, :encoder_out_lens[i], :] am_scores = decoder_out[i, :pre_token_length[i], :] if self.beam_search is not None: nbest_hyps = self.beam_search( x=x, am_scores=am_scores, maxlenratio=kwargs.get("maxlenratio", 0.0), minlenratio=kwargs.get("minlenratio", 0.0) ) nbest_hyps = nbest_hyps[: self.nbest] else: yseq = am_scores.argmax(dim=-1) score = am_scores.max(dim=-1)[0] score = torch.sum(score, dim=-1) # pad with mask tokens to ensure compatibility with sos/eos tokens yseq = torch.tensor( [self.sos] + yseq.tolist() + [self.eos], device=yseq.device ) nbest_hyps = [Hypothesis(yseq=yseq, score=score)] for nbest_idx, hyp in enumerate(nbest_hyps): ibest_writer = None if ibest_writer is None and kwargs.get("output_dir") is not None: writer = DatadirWriter(kwargs.get("output_dir")) ibest_writer = writer[f"{nbest_idx+1}best_recog"] # remove sos/eos and get results last_pos = -1 if isinstance(hyp.yseq, list): token_int = hyp.yseq[1:last_pos] else: token_int = hyp.yseq[1:last_pos].tolist() # remove blank symbol id, which is assumed to be 0 token_int = list(filter(lambda x: x != self.eos and x != self.sos and x != self.blank_id, token_int)) # Change integer-ids to tokens token = tokenizer.ids2tokens(token_int) text = tokenizer.tokens2text(token) text_postprocessed, _ = postprocess_utils.sentence_postprocess(token) result_i = {"key": key[i], "token": token, "text": text, "text_postprocessed": text_postprocessed} results.append(result_i) if ibest_writer is not None: ibest_writer["token"][key[i]] = " ".join(token) ibest_writer["text"][key[i]] = text ibest_writer["text_postprocessed"][key[i]] = text_postprocessed return results, meta_data class BiCifParaformer(Paraformer): """ Author: Speech Lab of DAMO Academy, Alibaba Group Paraformer: Fast and Accurate Parallel Transformer for Non-autoregressive End-to-End Speech Recognition https://arxiv.org/abs/2206.08317 """ def __init__( self, *args, **kwargs, ): super().__init__(*args, **kwargs) def _calc_pre2_loss( self, encoder_out: torch.Tensor, encoder_out_lens: torch.Tensor, ys_pad: torch.Tensor, ys_pad_lens: torch.Tensor, ): encoder_out_mask = (~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :]).to( encoder_out.device) if self.predictor_bias == 1: _, ys_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id) ys_pad_lens = ys_pad_lens + self.predictor_bias _, _, _, _, pre_token_length2 = self.predictor(encoder_out, ys_pad, encoder_out_mask, ignore_id=self.ignore_id) # loss_pre = self.criterion_pre(ys_pad_lens.type_as(pre_token_length), pre_token_length) loss_pre2 = self.criterion_pre(ys_pad_lens.type_as(pre_token_length2), pre_token_length2) return loss_pre2 def _calc_att_loss( self, encoder_out: torch.Tensor, encoder_out_lens: torch.Tensor, ys_pad: torch.Tensor, ys_pad_lens: torch.Tensor, ): encoder_out_mask = (~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :]).to( encoder_out.device) if self.predictor_bias == 1: _, ys_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id) ys_pad_lens = ys_pad_lens + self.predictor_bias pre_acoustic_embeds, pre_token_length, _, pre_peak_index, _ = self.predictor(encoder_out, ys_pad, encoder_out_mask, ignore_id=self.ignore_id) # 0. sampler decoder_out_1st = None if self.sampling_ratio > 0.0: sematic_embeds, decoder_out_1st = self.sampler(encoder_out, encoder_out_lens, ys_pad, ys_pad_lens, pre_acoustic_embeds) else: sematic_embeds = pre_acoustic_embeds # 1. Forward decoder decoder_outs = self.decoder( encoder_out, encoder_out_lens, sematic_embeds, ys_pad_lens ) decoder_out, _ = decoder_outs[0], decoder_outs[1] if decoder_out_1st is None: decoder_out_1st = decoder_out # 2. Compute attention loss loss_att = self.criterion_att(decoder_out, ys_pad) acc_att = th_accuracy( decoder_out_1st.view(-1, self.vocab_size), ys_pad, ignore_label=self.ignore_id, ) loss_pre = self.criterion_pre(ys_pad_lens.type_as(pre_token_length), pre_token_length) # Compute cer/wer using attention-decoder if self.training or self.error_calculator is None: cer_att, wer_att = None, None else: ys_hat = decoder_out_1st.argmax(dim=-1) cer_att, wer_att = self.error_calculator(ys_hat.cpu(), ys_pad.cpu()) return loss_att, acc_att, cer_att, wer_att, loss_pre def calc_predictor(self, encoder_out, encoder_out_lens): encoder_out_mask = (~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :]).to( encoder_out.device) pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index, pre_token_length2 = self.predictor(encoder_out, None, encoder_out_mask, ignore_id=self.ignore_id) return pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index def calc_predictor_timestamp(self, encoder_out, encoder_out_lens, token_num): encoder_out_mask = (~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :]).to( encoder_out.device) ds_alphas, ds_cif_peak, us_alphas, us_peaks = self.predictor.get_upsample_timestamp(encoder_out, encoder_out_mask, token_num) return ds_alphas, ds_cif_peak, us_alphas, us_peaks def forward( self, speech: torch.Tensor, speech_lengths: torch.Tensor, text: torch.Tensor, text_lengths: torch.Tensor, **kwargs, ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]: """Frontend + Encoder + Decoder + Calc loss Args: speech: (Batch, Length, ...) speech_lengths: (Batch, ) text: (Batch, Length) text_lengths: (Batch,) """ if len(text_lengths.size()) > 1: text_lengths = text_lengths[:, 0] if len(speech_lengths.size()) > 1: speech_lengths = speech_lengths[:, 0] batch_size = speech.shape[0] # Encoder encoder_out, encoder_out_lens = self.encode(speech, speech_lengths) loss_ctc, cer_ctc = None, None loss_pre = None stats = dict() # decoder: CTC branch if self.ctc_weight != 0.0: loss_ctc, cer_ctc = self._calc_ctc_loss( encoder_out, encoder_out_lens, text, text_lengths ) # Collect CTC branch stats stats["loss_ctc"] = loss_ctc.detach() if loss_ctc is not None else None stats["cer_ctc"] = cer_ctc # decoder: Attention decoder branch loss_att, acc_att, cer_att, wer_att, loss_pre = self._calc_att_loss( encoder_out, encoder_out_lens, text, text_lengths ) loss_pre2 = self._calc_pre2_loss( encoder_out, encoder_out_lens, text, text_lengths ) # 3. CTC-Att loss definition if self.ctc_weight == 0.0: loss = loss_att + loss_pre * self.predictor_weight + loss_pre2 * self.predictor_weight * 0.5 else: loss = self.ctc_weight * loss_ctc + ( 1 - self.ctc_weight) * loss_att + loss_pre * self.predictor_weight + loss_pre2 * self.predictor_weight * 0.5 # Collect Attn branch stats stats["loss_att"] = loss_att.detach() if loss_att is not None else None stats["acc"] = acc_att stats["cer"] = cer_att stats["wer"] = wer_att stats["loss_pre"] = loss_pre.detach().cpu() if loss_pre is not None else None stats["loss_pre2"] = loss_pre2.detach().cpu() stats["loss"] = torch.clone(loss.detach()) # force_gatherable: to-device and to-tensor if scalar for DataParallel if self.length_normalized_loss: batch_size = int((text_lengths + self.predictor_bias).sum()) loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device) return loss, stats, weight def generate(self, data_in: list, data_lengths: list = None, key: list = None, tokenizer=None, **kwargs, ): # init beamsearch is_use_ctc = kwargs.get("decoding_ctc_weight", 0.0) > 0.00001 and self.ctc != None is_use_lm = kwargs.get("lm_weight", 0.0) > 0.00001 and kwargs.get("lm_file", None) is not None if self.beam_search is None and (is_use_lm or is_use_ctc): logging.info("enable beam_search") self.init_beam_search(**kwargs) self.nbest = kwargs.get("nbest", 1) meta_data = {} # extract fbank feats time1 = time.perf_counter() audio_sample_list = load_audio(data_in, fs=self.frontend.fs, audio_fs=kwargs.get("fs", 16000)) time2 = time.perf_counter() meta_data["load_data"] = f"{time2 - time1:0.3f}" speech, speech_lengths = extract_fbank(audio_sample_list, data_type=kwargs.get("data_type", "sound"), frontend=self.frontend) time3 = time.perf_counter() meta_data["extract_feat"] = f"{time3 - time2:0.3f}" meta_data[ "batch_data_time"] = speech_lengths.sum().item() * self.frontend.frame_shift * self.frontend.lfr_n / 1000 speech.to(device=kwargs["device"]), speech_lengths.to(device=kwargs["device"]) # Encoder encoder_out, encoder_out_lens = self.encode(speech, speech_lengths) if isinstance(encoder_out, tuple): encoder_out = encoder_out[0] # predictor predictor_outs = self.calc_predictor(encoder_out, encoder_out_lens) pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index = predictor_outs[0], predictor_outs[1], \ predictor_outs[2], predictor_outs[3] pre_token_length = pre_token_length.round().long() if torch.max(pre_token_length) < 1: return [] decoder_outs = self.cal_decoder_with_predictor(encoder_out, encoder_out_lens, pre_acoustic_embeds, pre_token_length) decoder_out, ys_pad_lens = decoder_outs[0], decoder_outs[1] # BiCifParaformer, test no bias cif2 _, _, us_alphas, us_peaks = self.calc_predictor_timestamp(encoder_out, encoder_out_lens, pre_token_length) results = [] b, n, d = decoder_out.size() for i in range(b): x = encoder_out[i, :encoder_out_lens[i], :] am_scores = decoder_out[i, :pre_token_length[i], :] if self.beam_search is not None: nbest_hyps = self.beam_search( x=x, am_scores=am_scores, maxlenratio=kwargs.get("maxlenratio", 0.0), minlenratio=kwargs.get("minlenratio", 0.0) ) nbest_hyps = nbest_hyps[: self.nbest] else: yseq = am_scores.argmax(dim=-1) score = am_scores.max(dim=-1)[0] score = torch.sum(score, dim=-1) # pad with mask tokens to ensure compatibility with sos/eos tokens yseq = torch.tensor( [self.sos] + yseq.tolist() + [self.eos], device=yseq.device ) nbest_hyps = [Hypothesis(yseq=yseq, score=score)] for nbest_idx, hyp in enumerate(nbest_hyps): ibest_writer = None if ibest_writer is None and kwargs.get("output_dir") is not None: writer = DatadirWriter(kwargs.get("output_dir")) ibest_writer = writer[f"{nbest_idx + 1}best_recog"] # remove sos/eos and get results last_pos = -1 if isinstance(hyp.yseq, list): token_int = hyp.yseq[1:last_pos] else: token_int = hyp.yseq[1:last_pos].tolist() # remove blank symbol id, which is assumed to be 0 token_int = list(filter(lambda x: x != self.eos and x != self.sos and x != self.blank_id, token_int)) # Change integer-ids to tokens token = tokenizer.ids2tokens(token_int) text = tokenizer.tokens2text(token) _, timestamp = ts_prediction_lfr6_standard(us_alphas[i][:encoder_out_lens[i] * 3], us_peaks[i][:encoder_out_lens[i] * 3], copy.copy(token), vad_offset=kwargs.get("begin_time", 0)) text_postprocessed, time_stamp_postprocessed, word_lists = postprocess_utils.sentence_postprocess(token, timestamp) result_i = {"key": key[i], "token": token, "text": text, "text_postprocessed": text_postprocessed, "time_stamp_postprocessed": time_stamp_postprocessed, "word_lists": word_lists } results.append(result_i) if ibest_writer is not None: ibest_writer["token"][key[i]] = " ".join(token) ibest_writer["text"][key[i]] = text ibest_writer["text_postprocessed"][key[i]] = text_postprocessed return results, meta_data class ParaformerOnline(Paraformer): """ Author: Speech Lab of DAMO Academy, Alibaba Group Paraformer: Fast and Accurate Parallel Transformer for Non-autoregressive End-to-End Speech Recognition https://arxiv.org/abs/2206.08317 """ def __init__( self, *args, **kwargs, ): super().__init__(*args, **kwargs) # import pdb; # pdb.set_trace() self.sampling_ratio = kwargs.get("sampling_ratio", 0.2) self.scama_mask = None if hasattr(self.encoder, "overlap_chunk_cls") and self.encoder.overlap_chunk_cls is not None: from funasr.models.scama.chunk_utilis import build_scama_mask_for_cross_attention_decoder self.build_scama_mask_for_cross_attention_decoder_fn = build_scama_mask_for_cross_attention_decoder self.decoder_attention_chunk_type = kwargs.get("decoder_attention_chunk_type", "chunk") def forward( self, speech: torch.Tensor, speech_lengths: torch.Tensor, text: torch.Tensor, text_lengths: torch.Tensor, **kwargs, ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]: """Encoder + Decoder + Calc loss Args: speech: (Batch, Length, ...) speech_lengths: (Batch, ) text: (Batch, Length) text_lengths: (Batch,) """ # import pdb; # pdb.set_trace() decoding_ind = kwargs.get("decoding_ind") if len(text_lengths.size()) > 1: text_lengths = text_lengths[:, 0] if len(speech_lengths.size()) > 1: speech_lengths = speech_lengths[:, 0] batch_size = speech.shape[0] # Encoder if hasattr(self.encoder, "overlap_chunk_cls"): ind = self.encoder.overlap_chunk_cls.random_choice(self.training, decoding_ind) encoder_out, encoder_out_lens = self.encode(speech, speech_lengths, ind=ind) else: encoder_out, encoder_out_lens = self.encode(speech, speech_lengths) loss_ctc, cer_ctc = None, None loss_pre = None stats = dict() # decoder: CTC branch if self.ctc_weight > 0.0: if hasattr(self.encoder, "overlap_chunk_cls"): encoder_out_ctc, encoder_out_lens_ctc = self.encoder.overlap_chunk_cls.remove_chunk(encoder_out, encoder_out_lens, chunk_outs=None) else: encoder_out_ctc, encoder_out_lens_ctc = encoder_out, encoder_out_lens loss_ctc, cer_ctc = self._calc_ctc_loss( encoder_out_ctc, encoder_out_lens_ctc, text, text_lengths ) # Collect CTC branch stats stats["loss_ctc"] = loss_ctc.detach() if loss_ctc is not None else None stats["cer_ctc"] = cer_ctc # decoder: Attention decoder branch loss_att, acc_att, cer_att, wer_att, loss_pre, pre_loss_att = self._calc_att_predictor_loss( encoder_out, encoder_out_lens, text, text_lengths ) # 3. CTC-Att loss definition if self.ctc_weight == 0.0: loss = loss_att + loss_pre * self.predictor_weight else: loss = self.ctc_weight * loss_ctc + ( 1 - self.ctc_weight) * loss_att + loss_pre * self.predictor_weight # Collect Attn branch stats stats["loss_att"] = loss_att.detach() if loss_att is not None else None stats["pre_loss_att"] = pre_loss_att.detach() if pre_loss_att is not None else None stats["acc"] = acc_att stats["cer"] = cer_att stats["wer"] = wer_att stats["loss_pre"] = loss_pre.detach().cpu() if loss_pre is not None else None stats["loss"] = torch.clone(loss.detach()) # force_gatherable: to-device and to-tensor if scalar for DataParallel if self.length_normalized_loss: batch_size = (text_lengths + self.predictor_bias).sum() loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device) return loss, stats, weight def encode_chunk( self, speech: torch.Tensor, speech_lengths: torch.Tensor, cache: dict = None, **kwargs, ) -> Tuple[torch.Tensor, torch.Tensor]: """Frontend + Encoder. Note that this method is used by asr_inference.py Args: speech: (Batch, Length, ...) speech_lengths: (Batch, ) ind: int """ with autocast(False): # Data augmentation if self.specaug is not None and self.training: speech, speech_lengths = self.specaug(speech, speech_lengths) # Normalization for feature: e.g. Global-CMVN, Utterance-CMVN if self.normalize is not None: speech, speech_lengths = self.normalize(speech, speech_lengths) # Forward encoder encoder_out, encoder_out_lens, _ = self.encoder.forward_chunk(speech, speech_lengths, cache=cache["encoder"]) if isinstance(encoder_out, tuple): encoder_out = encoder_out[0] return encoder_out, torch.tensor([encoder_out.size(1)]) def _calc_att_predictor_loss( self, encoder_out: torch.Tensor, encoder_out_lens: torch.Tensor, ys_pad: torch.Tensor, ys_pad_lens: torch.Tensor, ): encoder_out_mask = (~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :]).to( encoder_out.device) if self.predictor_bias == 1: _, ys_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id) ys_pad_lens = ys_pad_lens + self.predictor_bias mask_chunk_predictor = None if self.encoder.overlap_chunk_cls is not None: mask_chunk_predictor = self.encoder.overlap_chunk_cls.get_mask_chunk_predictor(None, device=encoder_out.device, batch_size=encoder_out.size( 0)) mask_shfit_chunk = self.encoder.overlap_chunk_cls.get_mask_shfit_chunk(None, device=encoder_out.device, batch_size=encoder_out.size(0)) encoder_out = encoder_out * mask_shfit_chunk pre_acoustic_embeds, pre_token_length, pre_alphas, _ = self.predictor(encoder_out, ys_pad, encoder_out_mask, ignore_id=self.ignore_id, mask_chunk_predictor=mask_chunk_predictor, target_label_length=ys_pad_lens, ) predictor_alignments, predictor_alignments_len = self.predictor.gen_frame_alignments(pre_alphas, encoder_out_lens) scama_mask = None if self.encoder.overlap_chunk_cls is not None and self.decoder_attention_chunk_type == 'chunk': encoder_chunk_size = self.encoder.overlap_chunk_cls.chunk_size_pad_shift_cur attention_chunk_center_bias = 0 attention_chunk_size = encoder_chunk_size decoder_att_look_back_factor = self.encoder.overlap_chunk_cls.decoder_att_look_back_factor_cur mask_shift_att_chunk_decoder = self.encoder.overlap_chunk_cls. \ get_mask_shift_att_chunk_decoder(None, device=encoder_out.device, batch_size=encoder_out.size(0) ) scama_mask = self.build_scama_mask_for_cross_attention_decoder_fn( predictor_alignments=predictor_alignments, encoder_sequence_length=encoder_out_lens, chunk_size=1, encoder_chunk_size=encoder_chunk_size, attention_chunk_center_bias=attention_chunk_center_bias, attention_chunk_size=attention_chunk_size, attention_chunk_type=self.decoder_attention_chunk_type, step=None, predictor_mask_chunk_hopping=mask_chunk_predictor, decoder_att_look_back_factor=decoder_att_look_back_factor, mask_shift_att_chunk_decoder=mask_shift_att_chunk_decoder, target_length=ys_pad_lens, is_training=self.training, ) elif self.encoder.overlap_chunk_cls is not None: encoder_out, encoder_out_lens = self.encoder.overlap_chunk_cls.remove_chunk(encoder_out, encoder_out_lens, chunk_outs=None) # 0. sampler decoder_out_1st = None pre_loss_att = None if self.sampling_ratio > 0.0: if self.step_cur < 2: logging.info("enable sampler in paraformer, sampling_ratio: {}".format(self.sampling_ratio)) if self.use_1st_decoder_loss: sematic_embeds, decoder_out_1st, pre_loss_att = \ self.sampler_with_grad(encoder_out, encoder_out_lens, ys_pad, ys_pad_lens, pre_acoustic_embeds, scama_mask) else: sematic_embeds, decoder_out_1st = \ self.sampler(encoder_out, encoder_out_lens, ys_pad, ys_pad_lens, pre_acoustic_embeds, scama_mask) else: if self.step_cur < 2: logging.info("disable sampler in paraformer, sampling_ratio: {}".format(self.sampling_ratio)) sematic_embeds = pre_acoustic_embeds # 1. Forward decoder decoder_outs = self.decoder( encoder_out, encoder_out_lens, sematic_embeds, ys_pad_lens, scama_mask ) decoder_out, _ = decoder_outs[0], decoder_outs[1] if decoder_out_1st is None: decoder_out_1st = decoder_out # 2. Compute attention loss loss_att = self.criterion_att(decoder_out, ys_pad) acc_att = th_accuracy( decoder_out_1st.view(-1, self.vocab_size), ys_pad, ignore_label=self.ignore_id, ) loss_pre = self.criterion_pre(ys_pad_lens.type_as(pre_token_length), pre_token_length) # Compute cer/wer using attention-decoder if self.training or self.error_calculator is None: cer_att, wer_att = None, None else: ys_hat = decoder_out_1st.argmax(dim=-1) cer_att, wer_att = self.error_calculator(ys_hat.cpu(), ys_pad.cpu()) return loss_att, acc_att, cer_att, wer_att, loss_pre, pre_loss_att def sampler(self, encoder_out, encoder_out_lens, ys_pad, ys_pad_lens, pre_acoustic_embeds, chunk_mask=None): tgt_mask = (~make_pad_mask(ys_pad_lens, maxlen=ys_pad_lens.max())[:, :, None]).to(ys_pad.device) ys_pad_masked = ys_pad * tgt_mask[:, :, 0] if self.share_embedding: ys_pad_embed = self.decoder.output_layer.weight[ys_pad_masked] else: ys_pad_embed = self.decoder.embed(ys_pad_masked) with torch.no_grad(): decoder_outs = self.decoder( encoder_out, encoder_out_lens, pre_acoustic_embeds, ys_pad_lens, chunk_mask ) decoder_out, _ = decoder_outs[0], decoder_outs[1] pred_tokens = decoder_out.argmax(-1) nonpad_positions = ys_pad.ne(self.ignore_id) seq_lens = (nonpad_positions).sum(1) same_num = ((pred_tokens == ys_pad) & nonpad_positions).sum(1) input_mask = torch.ones_like(nonpad_positions) bsz, seq_len = ys_pad.size() for li in range(bsz): target_num = (((seq_lens[li] - same_num[li].sum()).float()) * self.sampling_ratio).long() if target_num > 0: input_mask[li].scatter_(dim=0, index=torch.randperm(seq_lens[li])[:target_num].cuda(), value=0) input_mask = input_mask.eq(1) input_mask = input_mask.masked_fill(~nonpad_positions, False) input_mask_expand_dim = input_mask.unsqueeze(2).to(pre_acoustic_embeds.device) sematic_embeds = pre_acoustic_embeds.masked_fill(~input_mask_expand_dim, 0) + ys_pad_embed.masked_fill( input_mask_expand_dim, 0) return sematic_embeds * tgt_mask, decoder_out * tgt_mask def calc_predictor(self, encoder_out, encoder_out_lens): encoder_out_mask = (~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :]).to( encoder_out.device) mask_chunk_predictor = None if self.encoder.overlap_chunk_cls is not None: mask_chunk_predictor = self.encoder.overlap_chunk_cls.get_mask_chunk_predictor(None, device=encoder_out.device, batch_size=encoder_out.size( 0)) mask_shfit_chunk = self.encoder.overlap_chunk_cls.get_mask_shfit_chunk(None, device=encoder_out.device, batch_size=encoder_out.size(0)) encoder_out = encoder_out * mask_shfit_chunk pre_acoustic_embeds, pre_token_length, pre_alphas, pre_peak_index = self.predictor(encoder_out, None, encoder_out_mask, ignore_id=self.ignore_id, mask_chunk_predictor=mask_chunk_predictor, target_label_length=None, ) predictor_alignments, predictor_alignments_len = self.predictor.gen_frame_alignments(pre_alphas, encoder_out_lens + 1 if self.predictor.tail_threshold > 0.0 else encoder_out_lens) scama_mask = None if self.encoder.overlap_chunk_cls is not None and self.decoder_attention_chunk_type == 'chunk': encoder_chunk_size = self.encoder.overlap_chunk_cls.chunk_size_pad_shift_cur attention_chunk_center_bias = 0 attention_chunk_size = encoder_chunk_size decoder_att_look_back_factor = self.encoder.overlap_chunk_cls.decoder_att_look_back_factor_cur mask_shift_att_chunk_decoder = self.encoder.overlap_chunk_cls. \ get_mask_shift_att_chunk_decoder(None, device=encoder_out.device, batch_size=encoder_out.size(0) ) scama_mask = self.build_scama_mask_for_cross_attention_decoder_fn( predictor_alignments=predictor_alignments, encoder_sequence_length=encoder_out_lens, chunk_size=1, encoder_chunk_size=encoder_chunk_size, attention_chunk_center_bias=attention_chunk_center_bias, attention_chunk_size=attention_chunk_size, attention_chunk_type=self.decoder_attention_chunk_type, step=None, predictor_mask_chunk_hopping=mask_chunk_predictor, decoder_att_look_back_factor=decoder_att_look_back_factor, mask_shift_att_chunk_decoder=mask_shift_att_chunk_decoder, target_length=None, is_training=self.training, ) self.scama_mask = scama_mask return pre_acoustic_embeds, pre_token_length, pre_alphas, pre_peak_index def calc_predictor_chunk(self, encoder_out, cache=None): pre_acoustic_embeds, pre_token_length = \ self.predictor.forward_chunk(encoder_out, cache["encoder"]) return pre_acoustic_embeds, pre_token_length def cal_decoder_with_predictor(self, encoder_out, encoder_out_lens, sematic_embeds, ys_pad_lens): decoder_outs = self.decoder( encoder_out, encoder_out_lens, sematic_embeds, ys_pad_lens, self.scama_mask ) decoder_out = decoder_outs[0] decoder_out = torch.log_softmax(decoder_out, dim=-1) return decoder_out, ys_pad_lens def cal_decoder_with_predictor_chunk(self, encoder_out, sematic_embeds, cache=None): decoder_outs = self.decoder.forward_chunk( encoder_out, sematic_embeds, cache["decoder"] ) decoder_out = decoder_outs decoder_out = torch.log_softmax(decoder_out, dim=-1) return decoder_out def generate(self, speech: torch.Tensor, speech_lengths: torch.Tensor, tokenizer=None, **kwargs, ): is_use_ctc = kwargs.get("ctc_weight", 0.0) > 0.00001 and self.ctc != None print(is_use_ctc) is_use_lm = kwargs.get("lm_weight", 0.0) > 0.00001 and kwargs.get("lm_file", None) is not None if self.beam_search is None and (is_use_lm or is_use_ctc): logging.info("enable beam_search") self.init_beam_search(speech, speech_lengths, **kwargs) self.nbest = kwargs.get("nbest", 1) # Forward Encoder encoder_out, encoder_out_lens = self.encode(speech, speech_lengths) if isinstance(encoder_out, tuple): encoder_out = encoder_out[0] # predictor predictor_outs = self.calc_predictor(encoder_out, encoder_out_lens) pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index = predictor_outs[0], predictor_outs[1], \ predictor_outs[2], predictor_outs[3] pre_token_length = pre_token_length.round().long() if torch.max(pre_token_length) < 1: return [] decoder_outs = self.cal_decoder_with_predictor(encoder_out, encoder_out_lens, pre_acoustic_embeds, pre_token_length) decoder_out, ys_pad_lens = decoder_outs[0], decoder_outs[1] results = [] b, n, d = decoder_out.size() for i in range(b): x = encoder_out[i, :encoder_out_lens[i], :] am_scores = decoder_out[i, :pre_token_length[i], :] if self.beam_search is not None: nbest_hyps = self.beam_search( x=x, am_scores=am_scores, maxlenratio=kwargs.get("maxlenratio", 0.0), minlenratio=kwargs.get("minlenratio", 0.0) ) nbest_hyps = nbest_hyps[: self.nbest] else: yseq = am_scores.argmax(dim=-1) score = am_scores.max(dim=-1)[0] score = torch.sum(score, dim=-1) # pad with mask tokens to ensure compatibility with sos/eos tokens yseq = torch.tensor( [self.sos] + yseq.tolist() + [self.eos], device=yseq.device ) nbest_hyps = [Hypothesis(yseq=yseq, score=score)] for hyp in nbest_hyps: assert isinstance(hyp, (Hypothesis)), type(hyp) # remove sos/eos and get results last_pos = -1 if isinstance(hyp.yseq, list): token_int = hyp.yseq[1:last_pos] else: token_int = hyp.yseq[1:last_pos].tolist() # remove blank symbol id, which is assumed to be 0 token_int = list(filter(lambda x: x != 0 and x != 2, token_int)) # Change integer-ids to tokens token = tokenizer.ids2tokens(token_int) text = tokenizer.tokens2text(token) timestamp = [] results.append((text, token, timestamp)) return results