import torch import json import torch.distributed as dist import time import logging from funasr.register import tables @tables.register("index_ds_classes", "IndexDSJsonl") class IndexDSJsonl(torch.utils.data.Dataset): def __init__(self, path): super().__init__() contents = [] with open(path, encoding='utf-8') as fin: for line in fin: data = json.loads(line.strip()) if "text" in data: # for sft self.contents.append(data['text']) if "source" in data: # for speech lab pretrain prompt = data["prompt"] source = data["source"] target = data["target"] source_len = data["source_len"] target_len = data["target_len"] contents.append({"source": source, "prompt": prompt, "target": target, "source_len": source_len, "target_len": target_len, } ) self.contents = [] total_num = len(contents) try: rank = dist.get_rank() world_size = dist.get_world_size() except: rank = 0 world_size = 1 logging.warning("distributed is not initialized, only single shard") num_per_rank = total_num // world_size # rank = 0 # import ipdb; ipdb.set_trace() self.contents = contents[rank * num_per_rank:(rank + 1) * num_per_rank] logging.info("in rank: {}, num of samplers: {}, total_num of samplers across ranks: {}".format(rank, len(self.contents), len(contents))) def __len__(self): return len(self.contents) def __getitem__(self, index): return self.contents[index] def get_source_len(self, data_dict): return data_dict["source_len"] def get_target_len(self, data_dict): return data_dict["target_len"] if "target_len" in data_dict else 0