import torch import json import torch.distributed as dist import numpy as np import kaldiio import librosa import torchaudio import time import logging from funasr.datasets.audio_datasets.load_audio_extract_fbank import load_audio, extract_fbank from funasr.register import tables @tables.register("dataset_classes", "AudioDataset") class AudioDataset(torch.utils.data.Dataset): def __init__(self, path, index_ds: str = None, frontend=None, tokenizer=None, int_pad_value: int = -1, float_pad_value: float = 0.0, **kwargs): super().__init__() index_ds_class = tables.index_ds_classes.get(index_ds.lower()) self.index_ds = index_ds_class(path) preprocessor_speech = kwargs.get("preprocessor_speech", None) if preprocessor_speech: preprocessor_speech_class = tables.preprocessor_speech_classes.get(preprocessor_speech.lower()) preprocessor_speech = preprocessor_speech_class(**kwargs.get("preprocessor_speech_conf")) self.preprocessor_speech = preprocessor_speech preprocessor_text = kwargs.get("preprocessor_text", None) if preprocessor_text: preprocessor_text_class = tables.preprocessor_text_classes.get(preprocessor_text.lower()) preprocessor_text = preprocessor_text_class(**kwargs.get("preprocessor_text_conf")) self.preprocessor_text = preprocessor_text self.frontend = frontend self.fs = 16000 if frontend is None else frontend.fs self.data_type = "sound" self.tokenizer = tokenizer self.int_pad_value = int_pad_value self.float_pad_value = float_pad_value def get_source_len(self, index): item = self.index_ds[index] return self.index_ds.get_source_len(item) def get_target_len(self, index): item = self.index_ds[index] return self.index_ds.get_target_len(item) def __len__(self): return len(self.index_ds) def __getitem__(self, index): item = self.index_ds[index] # import pdb; # pdb.set_trace() source = item["source"] data_src = load_audio(source, fs=self.fs) if self.preprocessor_speech: data_src = self.preprocessor_speech(data_src) speech, speech_lengths = extract_fbank(data_src, data_type=self.data_type, frontend=self.frontend) # speech: [b, T, d] target = item["target"] if self.preprocessor_text: target = self.preprocessor_text(target) ids = self.tokenizer.encode(target) ids_lengths = len(ids) text, text_lengths = torch.tensor(ids, dtype=torch.int64), torch.tensor([ids_lengths], dtype=torch.int32) return {"speech": speech[0, :, :], "speech_lengths": speech_lengths, "text": text, "text_lengths": text_lengths, } def collator(self, samples: list=None): outputs = {} for sample in samples: for key in sample.keys(): if key not in outputs: outputs[key] = [] outputs[key].append(sample[key]) for key, data_list in outputs.items(): if data_list[0].dtype == torch.int64: pad_value = self.int_pad_value else: pad_value = self.float_pad_value outputs[key] = torch.nn.utils.rnn.pad_sequence(data_list, batch_first=True, padding_value=pad_value) return outputs