import argparse import logging from optparse import Option import sys import json from pathlib import Path from typing import Any from typing import List from typing import Optional from typing import Sequence from typing import Tuple from typing import Union from typing import Dict import numpy as np import torch from typeguard import check_argument_types from funasr.fileio.datadir_writer import DatadirWriter from funasr.datasets.preprocessor import LMPreprocessor from funasr.tasks.asr import ASRTaskAligner as ASRTask from funasr.torch_utils.device_funcs import to_device from funasr.torch_utils.set_all_random_seed import set_all_random_seed from funasr.utils import config_argparse from funasr.utils.cli_utils import get_commandline_args from funasr.utils.types import str2bool from funasr.utils.types import str2triple_str from funasr.utils.types import str_or_none from funasr.models.frontend.wav_frontend import WavFrontend from funasr.text.token_id_converter import TokenIDConverter from funasr.utils.timestamp_tools import ts_prediction_lfr6_standard header_colors = '\033[95m' end_colors = '\033[0m' global_asr_language: str = 'zh-cn' global_sample_rate: Union[int, Dict[Any, int]] = { 'audio_fs': 16000, 'model_fs': 16000 } class SpeechText2Timestamp: def __init__( self, timestamp_infer_config: Union[Path, str] = None, timestamp_model_file: Union[Path, str] = None, timestamp_cmvn_file: Union[Path, str] = None, device: str = "cpu", dtype: str = "float32", **kwargs, ): assert check_argument_types() # 1. Build ASR model tp_model, tp_train_args = ASRTask.build_model_from_file( timestamp_infer_config, timestamp_model_file, device=device ) if 'cuda' in device: tp_model = tp_model.cuda() # force model to cuda frontend = None if tp_train_args.frontend is not None: frontend = WavFrontend(cmvn_file=timestamp_cmvn_file, **tp_train_args.frontend_conf) logging.info("tp_model: {}".format(tp_model)) logging.info("tp_train_args: {}".format(tp_train_args)) tp_model.to(dtype=getattr(torch, dtype)).eval() logging.info(f"Decoding device={device}, dtype={dtype}") self.tp_model = tp_model self.tp_train_args = tp_train_args token_list = self.tp_model.token_list self.converter = TokenIDConverter(token_list=token_list) self.device = device self.dtype = dtype self.frontend = frontend self.encoder_downsampling_factor = 1 if tp_train_args.encoder_conf["input_layer"] == "conv2d": self.encoder_downsampling_factor = 4 @torch.no_grad() def __call__( self, speech: Union[torch.Tensor, np.ndarray], speech_lengths: Union[torch.Tensor, np.ndarray] = None, text_lengths: Union[torch.Tensor, np.ndarray] = None ): assert check_argument_types() # Input as audio signal if isinstance(speech, np.ndarray): speech = torch.tensor(speech) if self.frontend is not None: feats, feats_len = self.frontend.forward(speech, speech_lengths) feats = to_device(feats, device=self.device) feats_len = feats_len.int() self.tp_model.frontend = None else: feats = speech feats_len = speech_lengths # lfr_factor = max(1, (feats.size()[-1]//80)-1) batch = {"speech": feats, "speech_lengths": feats_len} # a. To device batch = to_device(batch, device=self.device) # b. Forward Encoder enc, enc_len = self.tp_model.encode(**batch) if isinstance(enc, tuple): enc = enc[0] # c. Forward Predictor _, _, us_alphas, us_peaks = self.tp_model.calc_predictor_timestamp(enc, enc_len, text_lengths.to(self.device)+1) return us_alphas, us_peaks def inference( batch_size: int, ngpu: int, log_level: Union[int, str], data_path_and_name_and_type, timestamp_infer_config: Optional[str], timestamp_model_file: Optional[str], timestamp_cmvn_file: Optional[str] = None, raw_inputs: Union[np.ndarray, torch.Tensor] = None, key_file: Optional[str] = None, allow_variable_data_keys: bool = False, output_dir: Optional[str] = None, dtype: str = "float32", seed: int = 0, num_workers: int = 1, split_with_space: bool = True, seg_dict_file: Optional[str] = None, **kwargs, ): inference_pipeline = inference_modelscope( batch_size=batch_size, ngpu=ngpu, log_level=log_level, timestamp_infer_config=timestamp_infer_config, timestamp_model_file=timestamp_model_file, timestamp_cmvn_file=timestamp_cmvn_file, key_file=key_file, allow_variable_data_keys=allow_variable_data_keys, output_dir=output_dir, dtype=dtype, seed=seed, num_workers=num_workers, split_with_space=split_with_space, seg_dict_file=seg_dict_file, **kwargs, ) return inference_pipeline(data_path_and_name_and_type, raw_inputs) def inference_modelscope( batch_size: int, ngpu: int, log_level: Union[int, str], # data_path_and_name_and_type, timestamp_infer_config: Optional[str], timestamp_model_file: Optional[str], timestamp_cmvn_file: Optional[str] = None, # raw_inputs: Union[np.ndarray, torch.Tensor] = None, key_file: Optional[str] = None, allow_variable_data_keys: bool = False, output_dir: Optional[str] = None, dtype: str = "float32", seed: int = 0, num_workers: int = 1, split_with_space: bool = True, seg_dict_file: Optional[str] = None, **kwargs, ): assert check_argument_types() ncpu = kwargs.get("ncpu", 1) torch.set_num_threads(ncpu) if batch_size > 1: raise NotImplementedError("batch decoding is not implemented") if ngpu > 1: raise NotImplementedError("only single GPU decoding is supported") logging.basicConfig( level=log_level, format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s", ) if ngpu >= 1 and torch.cuda.is_available(): device = "cuda" else: device = "cpu" # 1. Set random-seed set_all_random_seed(seed) # 2. Build speech2vadsegment speechtext2timestamp_kwargs = dict( timestamp_infer_config=timestamp_infer_config, timestamp_model_file=timestamp_model_file, timestamp_cmvn_file=timestamp_cmvn_file, device=device, dtype=dtype, ) logging.info("speechtext2timestamp_kwargs: {}".format(speechtext2timestamp_kwargs)) speechtext2timestamp = SpeechText2Timestamp(**speechtext2timestamp_kwargs) preprocessor = LMPreprocessor( train=False, token_type=speechtext2timestamp.tp_train_args.token_type, token_list=speechtext2timestamp.tp_train_args.token_list, bpemodel=None, text_cleaner=None, g2p_type=None, text_name="text", non_linguistic_symbols=speechtext2timestamp.tp_train_args.non_linguistic_symbols, split_with_space=split_with_space, seg_dict_file=seg_dict_file, ) if output_dir is not None: writer = DatadirWriter(output_dir) tp_writer = writer[f"timestamp_prediction"] # ibest_writer["token_list"][""] = " ".join(speech2text.asr_train_args.token_list) else: tp_writer = None def _forward( data_path_and_name_and_type, raw_inputs: Union[np.ndarray, torch.Tensor] = None, output_dir_v2: Optional[str] = None, fs: dict = None, param_dict: dict = None, **kwargs ): output_path = output_dir_v2 if output_dir_v2 is not None else output_dir writer = None if output_path is not None: writer = DatadirWriter(output_path) tp_writer = writer[f"timestamp_prediction"] else: tp_writer = None # 3. Build data-iterator if data_path_and_name_and_type is None and raw_inputs is not None: if isinstance(raw_inputs, torch.Tensor): raw_inputs = raw_inputs.numpy() data_path_and_name_and_type = [raw_inputs, "speech", "waveform"] loader = ASRTask.build_streaming_iterator( data_path_and_name_and_type, dtype=dtype, batch_size=batch_size, key_file=key_file, num_workers=num_workers, preprocess_fn=preprocessor, collate_fn=ASRTask.build_collate_fn(speechtext2timestamp.tp_train_args, False), allow_variable_data_keys=allow_variable_data_keys, inference=True, ) tp_result_list = [] for keys, batch in loader: assert isinstance(batch, dict), type(batch) assert all(isinstance(s, str) for s in keys), keys _bs = len(next(iter(batch.values()))) assert len(keys) == _bs, f"{len(keys)} != {_bs}" logging.info("timestamp predicting, utt_id: {}".format(keys)) _batch = {'speech':batch['speech'], 'speech_lengths':batch['speech_lengths'], 'text_lengths':batch['text_lengths']} us_alphas, us_cif_peak = speechtext2timestamp(**_batch) for batch_id in range(_bs): key = keys[batch_id] token = speechtext2timestamp.converter.ids2tokens(batch['text'][batch_id]) ts_str, ts_list = ts_prediction_lfr6_standard(us_alphas[batch_id], us_cif_peak[batch_id], token, force_time_shift=-3.0) logging.warning(ts_str) item = {'key': key, 'value': ts_str, 'timestamp':ts_list} if tp_writer is not None: tp_writer["tp_sync"][key+'#'] = ts_str tp_writer["tp_time"][key+'#'] = str(ts_list) tp_result_list.append(item) return tp_result_list return _forward def get_parser(): parser = config_argparse.ArgumentParser( description="Timestamp Prediction Inference", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) # Note(kamo): Use '_' instead of '-' as separator. # '-' is confusing if written in yaml. parser.add_argument( "--log_level", type=lambda x: x.upper(), default="INFO", choices=("CRITICAL", "ERROR", "WARNING", "INFO", "DEBUG", "NOTSET"), help="The verbose level of logging", ) parser.add_argument("--output_dir", type=str, required=False) parser.add_argument( "--ngpu", type=int, default=0, help="The number of gpus. 0 indicates CPU mode", ) parser.add_argument( "--gpuid_list", type=str, default="", help="The visible gpus", ) parser.add_argument("--seed", type=int, default=0, help="Random seed") parser.add_argument( "--dtype", default="float32", choices=["float16", "float32", "float64"], help="Data type", ) parser.add_argument( "--num_workers", type=int, default=0, help="The number of workers used for DataLoader", ) group = parser.add_argument_group("Input data related") group.add_argument( "--data_path_and_name_and_type", type=str2triple_str, required=False, action="append", ) group.add_argument("--raw_inputs", type=list, default=None) # example=[{'key':'EdevDEWdIYQ_0021','file':'/mnt/data/jiangyu.xzy/test_data/speech_io/SPEECHIO_ASR_ZH00007_zhibodaihuo/wav/EdevDEWdIYQ_0021.wav'}]) group.add_argument("--key_file", type=str_or_none) group.add_argument("--allow_variable_data_keys", type=str2bool, default=False) group = parser.add_argument_group("The model configuration related") group.add_argument( "--timestamp_infer_config", type=str, help="VAD infer configuration", ) group.add_argument( "--timestamp_model_file", type=str, help="VAD model parameter file", ) group.add_argument( "--timestamp_cmvn_file", type=str, help="Global cmvn file", ) group = parser.add_argument_group("infer related") group.add_argument( "--batch_size", type=int, default=1, help="The batch size for inference", ) group.add_argument( "--seg_dict_file", type=str, default=None, help="The batch size for inference", ) group.add_argument( "--split_with_space", type=bool, default=False, help="The batch size for inference", ) return parser def main(cmd=None): print(get_commandline_args(), file=sys.stderr) parser = get_parser() args = parser.parse_args(cmd) kwargs = vars(args) kwargs.pop("config", None) inference(**kwargs) if __name__ == "__main__": main()