import json from typing import Union, Dict from pathlib import Path import os import logging import torch from funasr.export.models import get_model import numpy as np import random from funasr.utils.types import str2bool, str2triple_str # torch_version = float(".".join(torch.__version__.split(".")[:2])) # assert torch_version > 1.9 class ModelExport: def __init__( self, cache_dir: Union[Path, str] = None, onnx: bool = True, device: str = "cpu", quant: bool = True, fallback_num: int = 0, audio_in: str = None, calib_num: int = 200, model_revision: str = None, ): self.set_all_random_seed(0) self.cache_dir = cache_dir self.export_config = dict( feats_dim=560, onnx=False, ) self.onnx = onnx self.device = device self.quant = quant self.fallback_num = fallback_num self.frontend = None self.audio_in = audio_in self.calib_num = calib_num self.model_revision = model_revision def _export( self, model, model_dir: str = None, verbose: bool = False, ): export_dir = model_dir os.makedirs(export_dir, exist_ok=True) self.export_config["model_name"] = "model" model = get_model( model, self.export_config, ) model.eval() if self.onnx: self._export_onnx(model, verbose, export_dir) print("output dir: {}".format(export_dir)) def _export_onnx(self, model, verbose, path): model._export_onnx(verbose, path) def set_all_random_seed(self, seed: int): random.seed(seed) np.random.seed(seed) torch.random.manual_seed(seed) def parse_audio_in(self, audio_in): wav_list, name_list = [], [] if audio_in.endswith(".scp"): f = open(audio_in, 'r') lines = f.readlines()[:self.calib_num] for line in lines: name, path = line.strip().split() name_list.append(name) wav_list.append(path) else: wav_list = [audio_in,] name_list = ["test",] return wav_list, name_list def load_feats(self, audio_in: str = None): import torchaudio wav_list, name_list = self.parse_audio_in(audio_in) feats = [] feats_len = [] for line in wav_list: path = line.strip() waveform, sampling_rate = torchaudio.load(path) if sampling_rate != self.frontend.fs: waveform = torchaudio.transforms.Resample(orig_freq=sampling_rate, new_freq=self.frontend.fs)(waveform) fbank, fbank_len = self.frontend(waveform, [waveform.size(1)]) feats.append(fbank) feats_len.append(fbank_len) return feats, feats_len def export(self, mode: str = None, ): if mode.startswith('conformer'): from funasr.tasks.asr import ASRTask config = os.path.join(model_dir, 'config.yaml') model_file = os.path.join(model_dir, 'model.pb') cmvn_file = os.path.join(model_dir, 'am.mvn') model, asr_train_args = ASRTask.build_model_from_file( config, model_file, cmvn_file, 'cpu' ) self.frontend = model.frontend self.export_config["feats_dim"] = 560 self._export(model, self.cache_dir) if __name__ == '__main__': import argparse parser = argparse.ArgumentParser() # parser.add_argument('--model-name', type=str, required=True) parser.add_argument('--model-name', type=str, action="append", required=True, default=[]) parser.add_argument('--export-dir', type=str, required=True) parser.add_argument('--type', type=str, default='onnx', help='["onnx", "torch"]') parser.add_argument('--device', type=str, default='cpu', help='["cpu", "cuda"]') parser.add_argument('--quantize', type=str2bool, default=False, help='export quantized model') parser.add_argument('--fallback-num', type=int, default=0, help='amp fallback number') parser.add_argument('--audio_in', type=str, default=None, help='["wav", "wav.scp"]') parser.add_argument('--calib_num', type=int, default=200, help='calib max num') parser.add_argument('--model_revision', type=str, default=None, help='model_revision') args = parser.parse_args() export_model = ModelExport( cache_dir=args.export_dir, onnx=args.type == 'onnx', device=args.device, quant=args.quantize, fallback_num=args.fallback_num, audio_in=args.audio_in, calib_num=args.calib_num, model_revision=args.model_revision, ) for model_name in args.model_name: print("export model: {}".format(model_name)) export_model.export(model_name)