# server.py 注意本例仅处理单个clent发送的语音数据,并未对多client连接进行判断和处理 from modelscope.pipelines import pipeline from modelscope.utils.constant import Tasks from modelscope.utils.logger import get_logger import logging logger = get_logger(log_level=logging.CRITICAL) logger.setLevel(logging.CRITICAL) import asyncio import websockets import time from queue import Queue import threading import argparse parser = argparse.ArgumentParser() parser.add_argument("--host", type=str, default="0.0.0.0", required=False, help="host ip, localhost, 0.0.0.0") parser.add_argument("--port", type=int, default=10095, required=False, help="grpc server port") parser.add_argument("--asr_model", type=str, default="damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch", help="model from modelscope") parser.add_argument("--vad_model", type=str, default="damo/speech_fsmn_vad_zh-cn-16k-common-pytorch", help="model from modelscope") parser.add_argument("--punc_model", type=str, default="", help="model from modelscope") args = parser.parse_args() print("model loading") voices = Queue() speek = Queue() # 创建一个VAD对象 vad_pipline = pipeline( task=Tasks.voice_activity_detection, model=args.vad_model, model_revision="v1.2.0", output_dir=None, batch_size=1, ) # 创建一个ASR对象 param_dict = dict() # param_dict["hotword"] = "小五 小五月" # 设置热词,用空格隔开 inference_pipeline2 = pipeline( task=Tasks.auto_speech_recognition, model=args.asr_model, param_dict=param_dict, ) print("model loaded") async def ws_serve(websocket, path): global voices try: async for message in websocket: voices.put(message) #print("put") except websockets.exceptions.ConnectionClosedError as e: print('Connection closed with exception:', e) except Exception as e: print('Exception occurred:', e) start_server = websockets.serve(ws_serve, args.host, args.port, subprotocols=["binary"], ping_interval=None) def vad(data): # 推理 global vad_pipline #print(type(data)) segments_result = vad_pipline(audio_in=data) #print(segments_result) if len(segments_result) == 0: return False else: return True def asr(): # 推理 global inference_pipeline2 global speek while True: while not speek.empty(): audio_in = speek.get() speek.task_done() rec_result = inference_pipeline2(audio_in=audio_in) print(rec_result) time.sleep(0.1) time.sleep(0.1) def main(): # 推理 frames = [] # 存储所有的帧数据 buffer = [] # 存储缓存中的帧数据(最多两个片段) silence_count = 0 # 统计连续静音的次数 speech_detected = False # 标记是否检测到语音 RECORD_NUM = 0 global voices global speek while True: while not voices.empty(): data = voices.get() #print("队列排队数",voices.qsize()) voices.task_done() buffer.append(data) if len(buffer) > 2: buffer.pop(0) # 如果缓存超过两个片段,则删除最早的一个 if speech_detected: frames.append(data) RECORD_NUM += 1 if vad(data): if not speech_detected: print("检测到人声...") speech_detected = True # 标记为检测到语音 frames = [] frames.extend(buffer) # 把之前2个语音数据快加入 silence_count = 0 # 重置静音次数 else: silence_count += 1 # 增加静音次数 if speech_detected and (silence_count > 4 or RECORD_NUM > 50): #这里 50 可根据需求改为合适的数据快数量 print("说话结束或者超过设置最长时间...") audio_in = b"".join(frames) #asrt = threading.Thread(target=asr,args=(audio_in,)) #asrt.start() speek.put(audio_in) #rec_result = inference_pipeline2(audio_in=audio_in) # ASR 模型里跑一跑 frames = [] # 清空所有的帧数据 buffer = [] # 清空缓存中的帧数据(最多两个片段) silence_count = 0 # 统计连续静音的次数清零 speech_detected = False # 标记是否检测到语音 RECORD_NUM = 0 time.sleep(0.01) time.sleep(0.01) s = threading.Thread(target=main) s.start() s = threading.Thread(target=asr) s.start() asyncio.get_event_loop().run_until_complete(start_server) asyncio.get_event_loop().run_forever()