import argparse import logging import os import uuid import aiofiles import ffmpeg import uvicorn from fastapi import FastAPI, File, UploadFile from modelscope.utils.logger import get_logger from funasr import AutoModel logger = get_logger(log_level=logging.INFO) logger.setLevel(logging.INFO) parser = argparse.ArgumentParser() parser.add_argument("--host", type=str, default="0.0.0.0", required=False, help="host ip, localhost, 0.0.0.0") parser.add_argument("--port", type=int, default=8000, required=False, help="server port") parser.add_argument("--asr_model", type=str, default="paraformer-zh", help="asr model from https://github.com/alibaba-damo-academy/FunASR?tab=readme-ov-file#model-zoo") parser.add_argument("--asr_model_revision", type=str, default="v2.0.4", help="") parser.add_argument("--vad_model", type=str, default="fsmn-vad", help="vad model from https://github.com/alibaba-damo-academy/FunASR?tab=readme-ov-file#model-zoo") parser.add_argument("--vad_model_revision", type=str, default="v2.0.4", help="") parser.add_argument("--punc_model", type=str, default="ct-punc-c", help="model from https://github.com/alibaba-damo-academy/FunASR?tab=readme-ov-file#model-zoo") parser.add_argument("--punc_model_revision", type=str, default="v2.0.4", help="") parser.add_argument("--ngpu", type=int, default=1, help="0 for cpu, 1 for gpu") parser.add_argument("--device", type=str, default="cuda", help="cuda, cpu") parser.add_argument("--ncpu", type=int, default=4, help="cpu cores") parser.add_argument("--hotword_path", type=str, default='hotwords.txt', help="hot word txt path, only the hot word model works") parser.add_argument("--certfile", type=str, default=None, required=False, help="certfile for ssl") parser.add_argument("--keyfile", type=str, default=None, required=False, help="keyfile for ssl") parser.add_argument("--temp_dir", type=str, default="temp_dir/", required=False, help="temp dir") args = parser.parse_args() logger.info("----------- Configuration Arguments -----------") for arg, value in vars(args).items(): logger.info("%s: %s" % (arg, value)) logger.info("------------------------------------------------") os.makedirs(args.temp_dir, exist_ok=True) logger.info("model loading") # load funasr model model = AutoModel(model=args.asr_model, model_revision=args.asr_model_revision, vad_model=args.vad_model, vad_model_revision=args.vad_model_revision, punc_model=args.punc_model, punc_model_revision=args.punc_model_revision, ngpu=args.ngpu, ncpu=args.ncpu, device=args.device, disable_pbar=True, disable_log=True) logger.info("loaded models!") app = FastAPI(title="FunASR") param_dict = {"sentence_timestamp": True, "batch_size_s": 300} if args.hotword_path is not None and os.path.exists(args.hotword_path): with open(args.hotword_path, 'r', encoding='utf-8') as f: lines = f.readlines() lines = [line.strip() for line in lines] hotword = ' '.join(lines) logger.info(f'热词:{hotword}') param_dict['hotword'] = hotword @app.post("/recognition") async def api_recognition(audio: UploadFile = File(..., description="audio file")): suffix = audio.filename.split('.')[-1] audio_path = f'{args.temp_dir}/{str(uuid.uuid1())}.{suffix}' async with aiofiles.open(audio_path, 'wb') as out_file: content = await audio.read() await out_file.write(content) try: audio_bytes, _ = ( ffmpeg.input(audio_path, threads=0) .output("-", format="s16le", acodec="pcm_s16le", ac=1, ar=16000) .run(cmd=["ffmpeg", "-nostdin"], capture_stdout=True, capture_stderr=True) ) except Exception as e: logger.error(f'读取音频文件发生错误,错误信息:{e}') return {"msg": "读取音频文件发生错误", "code": 1} rec_results = model.generate(input=audio_bytes, is_final=True, **param_dict) # 结果为空 if len(rec_results) == 0: return {"text": "", "sentences": [], "code": 0} elif len(rec_results) == 1: # 解析识别结果 rec_result = rec_results[0] text = rec_result['text'] sentences = [] for sentence in rec_result['sentence_info']: # 每句话的时间戳 sentences.append({'text': sentence['text'], 'start': sentence['start'], 'end': sentence['start']}) ret = {"text": text, "sentences": sentences, "code": 0} logger.info(f'识别结果:{ret}') return ret else: logger.info(f'识别结果:{rec_results}') return {"msg": "未知错误", "code": -1} if __name__ == '__main__': uvicorn.run(app, host=args.host, port=args.port, ssl_keyfile=args.keyfile, ssl_certfile=args.certfile)