from pathlib import Path import os import argparse from funasr.utils.types import str2bool parser = argparse.ArgumentParser() parser.add_argument('--model-name', type=str, required=True) parser.add_argument('--export-dir', type=str, required=True) parser.add_argument('--type', type=str, default='onnx', help='["onnx", "torch"]') parser.add_argument('--device', type=str, default='cpu', help='["cpu", "cuda"]') parser.add_argument('--quantize', type=str2bool, default=False, help='export quantized model') parser.add_argument('--fallback-num', type=int, default=0, help='amp fallback number') parser.add_argument('--audio_in', type=str, default=None, help='["wav", "wav.scp"]') parser.add_argument('--model_revision', type=str, default=None, help='model_revision') parser.add_argument('--calib_num', type=int, default=200, help='calib max num') args = parser.parse_args() model_dir = args.model_name if not Path(args.model_name).exists(): from modelscope.hub.snapshot_download import snapshot_download try: model_dir = snapshot_download(args.model_name, cache_dir=args.export_dir, revision=args.model_revision) except: raise "model_dir must be model_name in modelscope or local path downloaded from modelscope, but is {}".format \ (model_dir) model_file = os.path.join(model_dir, 'model.onnx') if args.quantize: model_file = os.path.join(model_dir, 'model_quant.onnx') if not os.path.exists(model_file): print(".onnx is not exist, begin to export onnx") from funasr.export.export_model import ModelExport export_model = ModelExport( cache_dir=args.export_dir, onnx=True, device="cpu", quant=args.quantize, ) export_model.export(model_dir)