import torch import copy import logging import numpy as np from typing import Any, List, Tuple, Union def cut_interval(alphas: torch.Tensor, start: int, end: int, tail: bool): if not tail: if end == start + 1: cut = (end + start) / 2.0 else: alpha = alphas[start+1: end].tolist() reverse_steps = 1 for reverse_alpha in alpha[::-1]: if reverse_alpha > 0.35: reverse_steps += 1 else: break cut = end - reverse_steps else: if end != len(alphas) - 1: cut = end + 1 else: cut = start + 1 return float(cut) def time_stamp_lfr6(alphas: torch.Tensor, speech_lengths: torch.Tensor, raw_text: List[str], begin: int = 0, end: int = None): time_stamp_list = [] alphas = alphas[0] text = copy.deepcopy(raw_text) if end is None: time = speech_lengths * 60 / 1000 sacle_rate = (time / speech_lengths[0]).tolist() else: time = (end - begin) / 1000 sacle_rate = (time / speech_lengths[0]).tolist() predictor = (alphas > 0.5).int() fire_places = torch.nonzero(predictor == 1).squeeze(1).tolist() cuts = [] npeak = int(predictor.sum()) nchar = len(raw_text) if npeak - 1 == nchar: fire_places = torch.where((alphas > 0.5) == 1)[0].tolist() for i in range(len(fire_places)): if fire_places[i] < len(alphas) - 1: if 0.05 < alphas[fire_places[i]+1] < 0.5: fire_places[i] += 1 elif npeak < nchar: lost_num = nchar - npeak lost_fire = speech_lengths[0].tolist() - fire_places[-1] interval_distance = lost_fire // (lost_num + 1) for i in range(1, lost_num + 1): fire_places.append(fire_places[-1] + interval_distance) elif npeak - 1 > nchar: redundance_num = npeak - 1 - nchar for i in range(redundance_num): fire_places.pop() cuts.append(0) start_sil = True if start_sil: text.insert(0, '') for i in range(len(fire_places)-1): cuts.append(cut_interval(alphas, fire_places[i], fire_places[i+1], tail=(i==len(fire_places)-2))) for i in range(2, len(fire_places)-2): if fire_places[i-2] == fire_places[i-1] - 1 and fire_places[i-1] != fire_places[i] - 1: cuts[i-1] += 1 if cuts[-1] != len(alphas) - 1: text.append('') cuts.append(speech_lengths[0].tolist()) cuts.insert(-1, (cuts[-1] + cuts[-2]) * 0.5) sec_fire_places = np.array(cuts) * sacle_rate for i in range(1, len(sec_fire_places) - 1): start, end = sec_fire_places[i], sec_fire_places[i+1] if i == len(sec_fire_places) - 2: end = time time_stamp_list.append([int(round(start, 2) * 1000) + begin, int(round(end, 2) * 1000) + begin]) text = text[1:] if npeak - 1 == nchar or npeak > nchar: return time_stamp_list[:-1] else: return time_stamp_list def time_stamp_lfr6_pl(us_alphas, us_cif_peak, char_list, begin_time=0.0, end_time=None): START_END_THRESHOLD = 5 TIME_RATE = 10.0 * 6 / 1000 / 3 # 3 times upsampled if len(us_alphas.shape) == 3: alphas, cif_peak = us_alphas[0], us_cif_peak[0] # support inference batch_size=1 only else: alphas, cif_peak = us_alphas, us_cif_peak num_frames = cif_peak.shape[0] if char_list[-1] == '': char_list = char_list[:-1] # char_list = [i for i in text] timestamp_list = [] # for bicif model trained with large data, cif2 actually fires when a character starts # so treat the frames between two peaks as the duration of the former token fire_place = torch.where(cif_peak>1.0-1e-4)[0].cpu().numpy() - 1.5 num_peak = len(fire_place) assert num_peak == len(char_list) + 1 # number of peaks is supposed to be number of tokens + 1 # begin silence if fire_place[0] > START_END_THRESHOLD: char_list.insert(0, '') timestamp_list.append([0.0, fire_place[0]*TIME_RATE]) # tokens timestamp for i in range(len(fire_place)-1): # the peak is always a little ahead of the start time # timestamp_list.append([(fire_place[i]-1.2)*TIME_RATE, fire_place[i+1]*TIME_RATE]) timestamp_list.append([(fire_place[i])*TIME_RATE, fire_place[i+1]*TIME_RATE]) # cut the duration to token and sil of the 0-weight frames last long # tail token and end silence if num_frames - fire_place[-1] > START_END_THRESHOLD: _end = (num_frames + fire_place[-1]) / 2 timestamp_list[-1][1] = _end*TIME_RATE timestamp_list.append([_end*TIME_RATE, num_frames*TIME_RATE]) char_list.append("") else: timestamp_list[-1][1] = num_frames*TIME_RATE if begin_time: # add offset time in model with vad for i in range(len(timestamp_list)): timestamp_list[i][0] = timestamp_list[i][0] + begin_time / 1000.0 timestamp_list[i][1] = timestamp_list[i][1] + begin_time / 1000.0 res_txt = "" for char, timestamp in zip(char_list, timestamp_list): res_txt += "{} {} {};".format(char, timestamp[0], timestamp[1]) res = [] for char, timestamp in zip(char_list, timestamp_list): if char != '': res.append([int(timestamp[0] * 1000), int(timestamp[1] * 1000)]) return res