import argparse import logging import os import uuid import aiofiles import ffmpeg import uvicorn from fastapi import FastAPI, File, UploadFile, Body from modelscope.pipelines import pipeline from modelscope.utils.constant import Tasks from modelscope.utils.logger import get_logger logger = get_logger(log_level=logging.CRITICAL) logger.setLevel(logging.CRITICAL) parser = argparse.ArgumentParser() parser.add_argument("--host", type=str, default="0.0.0.0", required=False, help="host ip, localhost, 0.0.0.0") parser.add_argument("--port", type=int, default=8000, required=False, help="server port") parser.add_argument("--asr_model", type=str, default="damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch", help="offline asr model from modelscope") parser.add_argument("--vad_model", type=str, default="damo/speech_fsmn_vad_zh-cn-16k-common-pytorch", help="vad model from modelscope") parser.add_argument("--punc_model", type=str, default="damo/punc_ct-transformer_cn-en-common-vocab471067-large", help="punc model from modelscope") parser.add_argument("--ngpu", type=int, default=1, help="0 for cpu, 1 for gpu") parser.add_argument("--ncpu", type=int, default=4, help="cpu cores") parser.add_argument("--hotword_path", type=str, default=None, help="hot word txt path, only the hot word model works") parser.add_argument("--certfile", type=str, default=None, required=False, help="certfile for ssl") parser.add_argument("--keyfile", type=str, default=None, required=False, help="keyfile for ssl") parser.add_argument("--temp_dir", type=str, default="temp_dir/", required=False, help="temp dir") args = parser.parse_args() print("----------- Configuration Arguments -----------") for arg, value in vars(args).items(): print("%s: %s" % (arg, value)) print("------------------------------------------------") os.makedirs(args.temp_dir, exist_ok=True) print("model loading") param_dict = {} if args.hotword_path is not None and os.path.exists(args.hotword_path): param_dict['hotword'] = args.hotword_path # asr inference_pipeline_asr = pipeline(task=Tasks.auto_speech_recognition, model=args.asr_model, vad_model=args.vad_model, ngpu=args.ngpu, ncpu=args.ncpu, param_dict=param_dict) print(f'loaded asr models.') if args.punc_model != "": inference_pipeline_punc = pipeline(task=Tasks.punctuation, model=args.punc_model, ngpu=args.ngpu, ncpu=args.ncpu) print(f'loaded pun models.') else: inference_pipeline_punc = None app = FastAPI(title="FunASR") @app.post("/recognition") async def api_recognition(audio: UploadFile = File(..., description="audio file"), add_pun: int = Body(1, description="add punctuation", embed=True)): suffix = audio.filename.split('.')[-1] audio_path = f'{args.temp_dir}/{str(uuid.uuid1())}.{suffix}' async with aiofiles.open(audio_path, 'wb') as out_file: content = await audio.read() await out_file.write(content) audio_bytes, _ = ( ffmpeg.input(audio_path, threads=0) .output("-", format="s16le", acodec="pcm_s16le", ac=1, ar=16000) .run(cmd=["ffmpeg", "-nostdin"], capture_stdout=True, capture_stderr=True) ) rec_result = inference_pipeline_asr(audio_in=audio_bytes, param_dict={}) if add_pun: rec_result = inference_pipeline_punc(text_in=rec_result['text'], param_dict={'cache': list()}) ret = {"results": rec_result['text'], "code": 0} print(ret) return ret if __name__ == '__main__': uvicorn.run(app, host=args.host, port=args.port, ssl_keyfile=args.keyfile, ssl_certfile=args.certfile)