#!/usr/bin/env python import re import numpy as np def forward_segment(text, seg_dict): word_list = [] i = 0 while i < len(text): longest_word = text[i] for j in range(i + 1, len(text) + 1): word = text[i:j] if word in seg_dict: if len(word) > len(longest_word): longest_word = word word_list.append(longest_word) i += len(longest_word) return word_list def seg_tokenize(txt, seg_dict): out_txt = "" for word in txt: if word in seg_dict: out_txt += seg_dict[word] + " " else: out_txt += "" + " " return out_txt.strip().split() def tokenize(data, vocab=None, seg_dict=None, punc_dict=None, bpe_tokenizer=None): assert "text" in data assert isinstance(vocab, dict) text = data["text"] token = [] vad = -2 if bpe_tokenizer is not None: text = bpe_tokenizer.text2tokens("".join(text)) if seg_dict is not None: assert isinstance(seg_dict, dict) txt = forward_segment("".join(text).lower(), seg_dict) text = seg_tokenize(txt, seg_dict) length = len(text) for i in range(length): x = text[i] if i == length-1 and "punc" in data and text[i].startswith("vad:"): vad = x[-1][4:] if len(vad) == 0: vad = -1 else: vad = int(vad) elif x in vocab: token.append(vocab[x]) else: token.append(vocab['']) if "punc" in data and punc_dict is not None: punc_token = [] for punc in data["punc"]: if punc in punc_dict: punc_token.append(punc_dict[punc]) else: punc_token.append(punc_dict["_"]) data["punc"] = np.array(punc_token) data["text"] = np.array(token) if vad is not -2: data["vad_indexes"]=np.array([vad], dtype=np.int64) return data