import torch import copy import logging import numpy as np from typing import Any, List, Tuple, Union def cut_interval(alphas: torch.Tensor, start: int, end: int, tail: bool): if not tail: if end == start + 1: cut = (end + start) / 2.0 else: alpha = alphas[start+1: end].tolist() reverse_steps = 1 for reverse_alpha in alpha[::-1]: if reverse_alpha > 0.35: reverse_steps += 1 else: break cut = end - reverse_steps else: if end != len(alphas) - 1: cut = end + 1 else: cut = start + 1 return float(cut) def time_stamp_lfr6(alphas: torch.Tensor, speech_lengths: torch.Tensor, raw_text: List[str], begin: int = 0, end: int = None): time_stamp_list = [] alphas = alphas[0] text = copy.deepcopy(raw_text) if end is None: time = speech_lengths * 60 / 1000 sacle_rate = (time / speech_lengths[0]).tolist() else: time = (end - begin) / 1000 sacle_rate = (time / speech_lengths[0]).tolist() predictor = (alphas > 0.5).int() fire_places = torch.nonzero(predictor == 1).squeeze(1).tolist() cuts = [] npeak = int(predictor.sum()) nchar = len(raw_text) if npeak - 1 == nchar: fire_places = torch.where((alphas > 0.5) == 1)[0].tolist() for i in range(len(fire_places)): if fire_places[i] < len(alphas) - 1: if 0.05 < alphas[fire_places[i]+1] < 0.5: fire_places[i] += 1 elif npeak < nchar: lost_num = nchar - npeak lost_fire = speech_lengths[0].tolist() - fire_places[-1] interval_distance = lost_fire // (lost_num + 1) for i in range(1, lost_num + 1): fire_places.append(fire_places[-1] + interval_distance) elif npeak - 1 > nchar: redundance_num = npeak - 1 - nchar for i in range(redundance_num): fire_places.pop() cuts.append(0) start_sil = True if start_sil: text.insert(0, '') for i in range(len(fire_places)-1): cuts.append(cut_interval(alphas, fire_places[i], fire_places[i+1], tail=(i==len(fire_places)-2))) for i in range(2, len(fire_places)-2): if fire_places[i-2] == fire_places[i-1] - 1 and fire_places[i-1] != fire_places[i] - 1: cuts[i-1] += 1 if cuts[-1] != len(alphas) - 1: text.append('') cuts.append(speech_lengths[0].tolist()) cuts.insert(-1, (cuts[-1] + cuts[-2]) * 0.5) sec_fire_places = np.array(cuts) * sacle_rate for i in range(1, len(sec_fire_places) - 1): start, end = sec_fire_places[i], sec_fire_places[i+1] if i == len(sec_fire_places) - 2: end = time time_stamp_list.append([int(round(start, 2) * 1000) + begin, int(round(end, 2) * 1000) + begin]) text = text[1:] if npeak - 1 == nchar or npeak > nchar: return time_stamp_list[:-1] else: return time_stamp_list def time_stamp_lfr6_advance(tst: List, text: str): # advanced timestamp prediction for BiCIF_Paraformer using upsampled alphas ds_alphas, ds_cif_peak, us_alphas, us_cif_peak = tst if text.endswith(''): text = text[:-4] else: text = text[:-1] logging.warning("found text does not end with ") assert int(ds_alphas.sum() + 1e-4) - 1 == len(text)