#!/usr/bin/env bash . ./path.sh || exit 1; # machines configuration CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7" gpu_num=8 count=1 gpu_inference=true # Whether to perform gpu decoding, set false for cpu decoding # for gpu decoding, inference_nj=ngpu*njob; for cpu decoding, inference_nj=njob njob=5 train_cmd=utils/run.pl infer_cmd=utils/run.pl # general configuration feats_dir="../DATA" #feature output dictionary exp_dir="." lang=en dumpdir=dump/fbank feats_type=fbank token_type=bpe dataset_type=large scp=feats.scp type=kaldi_ark stage=3 stop_stage=4 # feature configuration feats_dim=80 sample_frequency=16000 nj=100 speed_perturb="0.9,1.0,1.1" # data data_librispeech= # bpe model nbpe=5000 bpemode=unigram # exp tag tag="" . utils/parse_options.sh || exit 1; # Set bash to 'debug' mode, it will exit on : # -e 'error', -u 'undefined variable', -o ... 'error in pipeline', -x 'print commands', set -e set -u set -o pipefail train_set=train_960 valid_set=dev test_sets="test_clean test_other dev_clean dev_other" asr_config=conf/train_asr_conformer.yaml #asr_config=conf/train_asr_conformer_uttnorm.yaml model_dir="baseline_$(basename "${asr_config}" .yaml)_${feats_type}_${lang}_${token_type}_${tag}" inference_config=conf/decode_asr_transformer.yaml #inference_config=conf/decode_asr_transformer_beam60_ctc0.3.yaml inference_asr_model=valid.acc.ave_10best.pth # you can set gpu num for decoding here gpuid_list=$CUDA_VISIBLE_DEVICES # set gpus for decoding, the same as training stage by default ngpu=$(echo $gpuid_list | awk -F "," '{print NF}') if ${gpu_inference}; then inference_nj=$[${ngpu}*${njob}] _ngpu=1 else inference_nj=$njob _ngpu=0 fi if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then echo "stage 0: Data preparation" # Data preparation for x in train-clean-100 train-clean-360 train-other-500 dev-clean dev-other test-clean test-other; do local/data_prep_librispeech.sh ${data_librispeech}/LibriSpeech/${x} ${feats_dir}/data/${x//-/_} done fi feat_train_dir=${feats_dir}/${dumpdir}/$train_set; mkdir -p ${feat_train_dir} feat_dev_clean_dir=${feats_dir}/${dumpdir}/dev_clean; mkdir -p ${feat_dev_clean_dir} feat_dev_other_dir=${feats_dir}/${dumpdir}/dev_other; mkdir -p ${feat_dev_other_dir} feat_test_clean_dir=${feats_dir}/${dumpdir}/test_clean; mkdir -p ${feat_test_clean_dir} feat_test_other_dir=${feats_dir}/${dumpdir}/test_other; mkdir -p ${feat_test_other_dir} feat_dev_dir=${feats_dir}/${dumpdir}/$valid_set; mkdir -p ${feat_dev_dir} if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then echo "stage 1: Feature Generation" # compute fbank features fbankdir=${feats_dir}/fbank for x in dev_clean dev_other test_clean test_other; do utils/compute_fbank.sh --cmd "$train_cmd" --nj 1 --max_lengths 3000 --feats_dim ${feats_dim} --sample_frequency ${sample_frequency} \ ${feats_dir}/data/${x} ${exp_dir}/exp/make_fbank/${x} ${fbankdir}/${x} utils/fix_data_feat.sh ${fbankdir}/${x} done mkdir ${feats_dir}/data/$train_set train_sets="train_clean_100 train_clean_360 train_other_500" for file in wav.scp text; do ( for f in $train_sets; do cat $feats_dir/data/$f/$file; done ) | sort -k1 > $feats_dir/data/$train_set/$file || exit 1; done utils/compute_fbank.sh --cmd "$train_cmd" --nj $nj --max_lengths 3000 --feats_dim ${feats_dim} --sample_frequency ${sample_frequency} --speed_perturb ${speed_perturb} \ ${feats_dir}/data/$train_set ${exp_dir}/exp/make_fbank/$train_set ${fbankdir}/$train_set utils/fix_data_feat.sh ${fbankdir}/$train_set # compute global cmvn utils/compute_cmvn.sh --cmd "$train_cmd" --nj $nj --feats_dim ${feats_dim} \ ${fbankdir}/$train_set ${exp_dir}/exp/make_fbank/$train_set # apply cmvn utils/apply_cmvn.sh --cmd "$train_cmd" --nj $nj \ ${fbankdir}/$train_set ${fbankdir}/$train_set/cmvn.json ${exp_dir}/exp/make_fbank/$train_set ${feat_train_dir} utils/apply_cmvn.sh --cmd "$train_cmd" --nj 1 \ ${fbankdir}/dev_clean ${fbankdir}/$train_set/cmvn.json ${exp_dir}/exp/make_fbank/dev_clean ${feat_dev_clean_dir} utils/apply_cmvn.sh --cmd "$train_cmd" --nj 1\ ${fbankdir}/dev_other ${fbankdir}/$train_set/cmvn.json ${exp_dir}/exp/make_fbank/dev_other ${feat_dev_other_dir} utils/apply_cmvn.sh --cmd "$train_cmd" --nj 1 \ ${fbankdir}/test_clean ${fbankdir}/$train_set/cmvn.json ${exp_dir}/exp/make_fbank/test_clean ${feat_test_clean_dir} utils/apply_cmvn.sh --cmd "$train_cmd" --nj 1 \ ${fbankdir}/test_other ${fbankdir}/$train_set/cmvn.json ${exp_dir}/exp/make_fbank/test_other ${feat_test_other_dir} cp ${fbankdir}/$train_set/text ${fbankdir}/$train_set/speech_shape ${fbankdir}/$train_set/text_shape ${feat_train_dir} cp ${fbankdir}/dev_clean/text ${fbankdir}/dev_clean/speech_shape ${fbankdir}/dev_clean/text_shape ${feat_dev_clean_dir} cp ${fbankdir}/dev_other/text ${fbankdir}/dev_other/speech_shape ${fbankdir}/dev_other/text_shape ${feat_dev_other_dir} cp ${fbankdir}/test_clean/text ${fbankdir}/test_clean/speech_shape ${fbankdir}/test_clean/text_shape ${feat_test_clean_dir} cp ${fbankdir}/test_other/text ${fbankdir}/test_other/speech_shape ${fbankdir}/test_other/text_shape ${feat_test_other_dir} dev_sets="dev_clean dev_other" for file in feats.scp text speech_shape text_shape; do ( for f in $dev_sets; do cat $feats_dir/${dumpdir}/$f/$file; done ) | sort -k1 > $feat_dev_dir/$file || exit 1; done #generate ark list utils/gen_ark_list.sh --cmd "$train_cmd" --nj $nj ${feat_train_dir} ${fbankdir}/${train_set} ${feat_train_dir} utils/gen_ark_list.sh --cmd "$train_cmd" --nj $nj ${feat_dev_dir} ${fbankdir}/${valid_set} ${feat_dev_dir} fi dict=${feats_dir}/data/lang_char/${train_set}_${bpemode}${nbpe}_units.txt bpemodel=${feats_dir}/data/lang_char/${train_set}_${bpemode}${nbpe} echo "dictionary: ${dict}" if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then ### Task dependent. You have to check non-linguistic symbols used in the corpus. echo "stage 2: Dictionary and Json Data Preparation" mkdir -p ${feats_dir}/data/lang_char/ echo "" > ${dict} echo "" >> ${dict} echo "" >> ${dict} cut -f 2- -d" " ${feats_dir}/data/${train_set}/text > ${feats_dir}/data/lang_char/input.txt spm_train --input=${feats_dir}/data/lang_char/input.txt --vocab_size=${nbpe} --model_type=${bpemode} --model_prefix=${bpemodel} --input_sentence_size=100000000 spm_encode --model=${bpemodel}.model --output_format=piece < ${feats_dir}/data/lang_char/input.txt | tr ' ' '\n' | sort | uniq | awk '{print $0}' >> ${dict} echo "" >> ${dict} wc -l ${dict} vocab_size=$(cat ${dict} | wc -l) awk -v v=,${vocab_size} '{print $0v}' ${feat_train_dir}/text_shape > ${feat_train_dir}/text_shape.char awk -v v=,${vocab_size} '{print $0v}' ${feat_dev_dir}/text_shape > ${feat_dev_dir}/text_shape.char mkdir -p ${feats_dir}/asr_stats_fbank_zh_char/$train_set mkdir -p ${feats_dir}/asr_stats_fbank_zh_char/$valid_set cp ${feat_train_dir}/speech_shape ${feat_train_dir}/text_shape ${feat_train_dir}/text_shape.char ${feats_dir}/asr_stats_fbank_zh_char/$train_set cp ${feat_dev_dir}/speech_shape ${feat_dev_dir}/text_shape ${feat_dev_dir}/text_shape.char ${feats_dir}/asr_stats_fbank_zh_char/$valid_set fi # Training Stage world_size=$gpu_num # run on one machine if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then echo "stage 3: Training" mkdir -p ${exp_dir}/exp/${model_dir} mkdir -p ${exp_dir}/exp/${model_dir}/log INIT_FILE=${exp_dir}/exp/${model_dir}/ddp_init if [ -f $INIT_FILE ];then rm -f $INIT_FILE fi init_method=file://$(readlink -f $INIT_FILE) echo "$0: init method is $init_method" for ((i = 0; i < $gpu_num; ++i)); do { rank=$i local_rank=$i gpu_id=$(echo $CUDA_VISIBLE_DEVICES | cut -d',' -f$[$i+1]) asr_train.py \ --gpu_id $gpu_id \ --use_preprocessor true \ --split_with_space false \ --bpemodel ${bpemodel}.model \ --token_type $token_type \ --dataset_type $dataset_type \ --token_list $dict \ --train_data_file $feats_dir/$dumpdir/${train_set}/ark_txt.scp \ --valid_data_file $feats_dir/$dumpdir/${valid_set}/ark_txt.scp \ --resume true \ --output_dir ${exp_dir}/exp/${model_dir} \ --config $asr_config \ --input_size $feats_dim \ --ngpu $gpu_num \ --num_worker_count $count \ --multiprocessing_distributed true \ --dist_init_method $init_method \ --dist_world_size $world_size \ --dist_rank $rank \ --local_rank $local_rank 1> ${exp_dir}/exp/${model_dir}/log/train.log.$i 2>&1 } & done wait fi # Testing Stage if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then echo "stage 4: Inference" for dset in ${test_sets}; do asr_exp=${exp_dir}/exp/${model_dir} inference_tag="$(basename "${inference_config}" .yaml)" _dir="${asr_exp}/${inference_tag}/${inference_asr_model}/${dset}" _logdir="${_dir}/logdir" if [ -d ${_dir} ]; then echo "${_dir} is already exists. if you want to decode again, please delete this dir first." exit 0 fi mkdir -p "${_logdir}" _data="${feats_dir}/${dumpdir}/${dset}" key_file=${_data}/${scp} num_scp_file="$(<${key_file} wc -l)" _nj=$([ $inference_nj -le $num_scp_file ] && echo "$inference_nj" || echo "$num_scp_file") split_scps= for n in $(seq "${_nj}"); do split_scps+=" ${_logdir}/keys.${n}.scp" done # shellcheck disable=SC2086 utils/split_scp.pl "${key_file}" ${split_scps} _opts= if [ -n "${inference_config}" ]; then _opts+="--config ${inference_config} " fi ${infer_cmd} --gpu "${_ngpu}" --max-jobs-run "${_nj}" JOB=1:"${_nj}" "${_logdir}"/asr_inference.JOB.log \ python -m funasr.bin.asr_inference_launch \ --batch_size 1 \ --ngpu "${_ngpu}" \ --njob ${njob} \ --gpuid_list ${gpuid_list} \ --data_path_and_name_and_type "${_data}/${scp},speech,${type}" \ --key_file "${_logdir}"/keys.JOB.scp \ --asr_train_config "${asr_exp}"/config.yaml \ --asr_model_file "${asr_exp}"/"${inference_asr_model}" \ --output_dir "${_logdir}"/output.JOB \ --mode asr \ ${_opts} for f in token token_int score text; do if [ -f "${_logdir}/output.1/1best_recog/${f}" ]; then for i in $(seq "${_nj}"); do cat "${_logdir}/output.${i}/1best_recog/${f}" done | sort -k1 >"${_dir}/${f}" fi done python utils/compute_wer.py ${_data}/text ${_dir}/text ${_dir}/text.cer tail -n 3 ${_dir}/text.cer > ${_dir}/text.cer.txt cat ${_dir}/text.cer.txt done fi