# ONNXRuntime-cpp ## Export the model ### Install [modelscope and funasr](https://github.com/alibaba-damo-academy/FunASR#installation) ```shell # pip3 install torch torchaudio pip install -U modelscope funasr # For the users in China, you could install with the command: # pip install -U modelscope funasr -f https://modelscope.oss-cn-beijing.aliyuncs.com/releases/repo.html -i https://mirror.sjtu.edu.cn/pypi/web/simple ``` ### Export [onnx model](https://github.com/alibaba-damo-academy/FunASR/tree/main/funasr/export) ```shell python -m funasr.export.export_model --model-name damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch --export-dir ./export --type onnx --quantize True ``` ## Building for Linux/Unix ### Download onnxruntime ```shell # download an appropriate onnxruntime from https://github.com/microsoft/onnxruntime/releases/tag/v1.14.0 # here we get a copy of onnxruntime for linux 64 wget https://github.com/microsoft/onnxruntime/releases/download/v1.14.0/onnxruntime-linux-x64-1.14.0.tgz tar -zxvf onnxruntime-linux-x64-1.14.0.tgz ``` ### Install openblas ```shell sudo apt-get install libopenblas-dev #ubuntu # sudo yum -y install openblas-devel #centos ``` ### Build runtime ```shell git clone https://github.com/alibaba-damo-academy/FunASR.git && cd funasr/runtime/onnxruntime mkdir build && cd build cmake -DCMAKE_BUILD_TYPE=release .. -DONNXRUNTIME_DIR=/path/to/onnxruntime-linux-x64-1.14.0 make ``` ## Run the demo ```shell ./funasr-onnx-offline [--wav-scp ] [--wav-path ] [--punc-config ] [--punc-model ] --am-config --am-cmvn --am-model [--vad-config ] [--vad-cmvn ] [--vad-model ] [--] [--version] [-h] Where: --wav-scp wave scp path --wav-path wave file path --punc-config punc config path --punc-model punc model path --am-config (required) am config path --am-cmvn (required) am cmvn path --am-model (required) am model path --vad-config vad config path --vad-cmvn vad cmvn path --vad-model vad model path Required: --am-config --am-cmvn --am-model If use vad, please add: [--vad-config ] [--vad-cmvn ] [--vad-model ] If use punc, please add: [--punc-config ] [--punc-model ] ``` ## Acknowledge 1. This project is maintained by [FunASR community](https://github.com/alibaba-damo-academy/FunASR). 2. We acknowledge mayong for contributing the onnxruntime of Paraformer and CT_Transformer, [repo-asr](https://github.com/RapidAI/RapidASR/tree/main/cpp_onnx), [repo-punc](https://github.com/RapidAI/RapidPunc). 3. We acknowledge [ChinaTelecom](https://github.com/zhuzizyf/damo-fsmn-vad-infer-httpserver) for contributing the VAD runtime. 4. We borrowed a lot of code from [FastASR](https://github.com/chenkui164/FastASR) for audio frontend and text-postprocess.