import torch import json import torch.distributed as dist import numpy as np import kaldiio import librosa def load_audio(audio_path: str, fs: int=16000): audio = None if audio_path.startswith("oss:"): pass elif audio_path.startswith("odps:"): pass else: if ".ark:" in audio_path: audio = kaldiio.load_mat(audio_path) else: audio, fs = librosa.load(audio_path, sr=fs) return audio def extract_features(data, date_type: str="sound", frontend=None): if date_type == "sound": feat, feats_lens = frontend(data, len(data)) feat = feat[0, :, :] else: feat, feats_lens = torch.from_numpy(data).to(torch.float32), torch.tensor([data.shape[0]]).to(torch.int32) return feat, feats_lens class IndexedDatasetJsonl(torch.utils.data.Dataset): def __init__(self, path): super().__init__() # data_parallel_size = dist.get_world_size() data_parallel_size = 1 contents = [] with open(path, encoding='utf-8') as fin: for line in fin: data = json.loads(line.strip()) if "text" in data: # for sft self.contents.append(data['text']) if "source" in data: # for speech lab pretrain prompt = data["prompt"] source = data["source"] target = data["target"] source_len = data["source_len"] target_len = data["target_len"] contents.append({"source": source, "prompt": prompt, "target": target, "source_len": source_len, "target_len": target_len, } ) self.contents = [] total_num = len(contents) num_per_rank = total_num // data_parallel_size # rank = dist.get_rank() rank = 0 # import ipdb; ipdb.set_trace() self.contents = contents[rank * num_per_rank:(rank + 1) * num_per_rank] def __len__(self): return len(self.contents) def __getitem__(self, index): return self.contents[index] class AudioDataset(torch.utils.data.Dataset): def __init__(self, path, frontend=None, tokenizer=None): super().__init__() self.indexed_dataset = IndexedDatasetJsonl(path) self.frontend = frontend.forward self.fs = 16000 if frontend is None else frontend.fs self.data_type = "sound" self.tokenizer = tokenizer self.int_pad_value = -1 self.float_pad_value = 0.0 def __len__(self): return len(self.indexed_dataset) def __getitem__(self, index): item = self.indexed_dataset[index] source = item["source"] data_src = load_audio(source, fs=self.fs) speech, speech_lengths = extract_features(data_src, self.data_type, self.frontend) target = item["target"] text = self.tokenizer.encode(target) text_lengths = len(text) text, text_lengths = torch.tensor(text, dtype=torch.int64), torch.tensor([text_lengths], dtype=torch.int32) return {"speech": speech, "speech_lengths": speech_lengths, "text": text, "text_lengths": text_lengths, } def collator(self, samples: list=None): outputs = {} for sample in samples: for key in sample.keys(): if key not in outputs: outputs[key] = [] outputs[key].append(sample[key]) for key, data_list in outputs.items(): if data_list[0].dtype.kind == "i": pad_value = self.int_pad_value else: pad_value = self.float_pad_value outputs[key] = torch.nn.utils.rnn.pad_sequence(data_list, batch_first=True, padding_value=pad_value) return samples