# Pretrained Models on ModelScope ## Model License - Apache License 2.0 ## Model Zoo Here we provided several pretrained models on different datasets. The details of models and datasets can be found on [ModelScope](https://www.modelscope.cn/models?page=1&tasks=auto-speech-recognition). ### Speech Recognition Models #### Paraformer Models | Model Name | Language | Training Data | Vocab Size | Parameter | Offline/Online | Notes | |:--------------------------------------------------------------------------------------------------------------------------------------------------:|:--------:|:--------------------------------:|:----------:|:---------:|:--------------:|:--------------------------------------------------------------------------------------------------------------------------------| | [Paraformer-large](https://www.modelscope.cn/models/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/summary) | CN & EN | Alibaba Speech Data (60000hours) | 8404 | 220M | Offline | Duration of input wav <= 20s | | [Paraformer-large-long](https://www.modelscope.cn/models/damo/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch/summary) | CN & EN | Alibaba Speech Data (60000hours) | 8404 | 220M | Offline | Which ould deal with arbitrary length input wav | | [Paraformer-large-contextual](https://www.modelscope.cn/models/damo/speech_paraformer-large-contextual_asr_nat-zh-cn-16k-common-vocab8404/summary) | CN & EN | Alibaba Speech Data (60000hours) | 8404 | 220M | Offline | Which supports the hotword customization based on the incentive enhancement, and improves the recall and precision of hotwords. | | [Paraformer](https://modelscope.cn/models/damo/speech_paraformer_asr_nat-zh-cn-16k-common-vocab8358-tensorflow1/summary) | CN & EN | Alibaba Speech Data (50000hours) | 8358 | 68M | Offline | Duration of input wav <= 20s | | [Paraformer-online](https://www.modelscope.cn/models/damo/speech_paraformer_asr_nat-zh-cn-16k-common-vocab8404-online/summary) | CN & EN | Alibaba Speech Data (50000hours) | 8404 | 68M | Online | Which could deal with streaming input | | [Paraformer-large-online](https://www.modelscope.cn/models/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-online/summary) | CN & EN | Alibaba Speech Data (60000hours) | 8404 | 220M | Online | Which could deal with streaming input | | [Paraformer-tiny](https://www.modelscope.cn/models/damo/speech_paraformer-tiny-commandword_asr_nat-zh-cn-16k-vocab544-pytorch/summary) | CN | Alibaba Speech Data (200hours) | 544 | 5.2M | Offline | Lightweight Paraformer model which supports Mandarin command words recognition | | [Paraformer-aishell](https://www.modelscope.cn/models/damo/speech_paraformer_asr_nat-aishell1-pytorch/summary) | CN | AISHELL (178hours) | 4234 | 43M | Offline | | | [ParaformerBert-aishell](https://modelscope.cn/models/damo/speech_paraformerbert_asr_nat-zh-cn-16k-aishell1-vocab4234-pytorch/summary) | CN | AISHELL (178hours) | 4234 | 43M | Offline | | | [Paraformer-aishell2](https://www.modelscope.cn/models/damo/speech_paraformer_asr_nat-zh-cn-16k-aishell2-vocab5212-pytorch/summary) | CN | AISHELL-2 (1000hours) | 5212 | 64M | Offline | | | [ParaformerBert-aishell2](https://www.modelscope.cn/models/damo/speech_paraformerbert_asr_nat-zh-cn-16k-aishell2-vocab5212-pytorch/summary) | CN | AISHELL-2 (1000hours) | 5212 | 64M | Offline | | #### UniASR Models | Model Name | Language | Training Data | Vocab Size | Parameter | Offline/Online | Notes | |:-------------------------------------------------------------------------------------------------------------------------------------------------:|:---------------:|:---------------------------------:|:----------:|:---------:|:--------------:|:--------------------------------------------------------------------------------------------------------------------------------| | [UniASR](https://modelscope.cn/models/damo/speech_UniASR_asr_2pass-zh-cn-16k-common-vocab8358-tensorflow1-online/summary) | CN & EN | Alibaba Speech Data (60000 hours) | 8358 | 100M | Online | UniASR streaming offline unifying models | | [UniASR-large](https://modelscope.cn/models/damo/speech_UniASR-large_asr_2pass-zh-cn-16k-common-vocab8358-tensorflow1-offline/summary) | CN & EN | Alibaba Speech Data (60000 hours) | 8358 | 220M | Offline | UniASR streaming offline unifying models | | [UniASR English](https://modelscope.cn/models/damo/speech_UniASR_asr_2pass-en-16k-common-vocab1080-tensorflow1-online/summary) | EN | Alibaba Speech Data (10000 hours) | 1080 | 95M | Online | UniASR streaming online unifying models | | [UniASR Russian](https://modelscope.cn/models/damo/speech_UniASR_asr_2pass-ru-16k-common-vocab1664-tensorflow1-online/summary) | RU | Alibaba Speech Data (5000 hours) | 1664 | 95M | Online | UniASR streaming online unifying models | | [UniASR Japanese](https://modelscope.cn/models/damo/speech_UniASR_asr_2pass-ja-16k-common-vocab93-tensorflow1-online/summary) | JA | Alibaba Speech Data (5000 hours) | 5977 | 95M | Online | UniASR streaming offline unifying models | | [UniASR Korean](https://modelscope.cn/models/damo/speech_UniASR_asr_2pass-ko-16k-common-vocab6400-tensorflow1-online/summary) | KO | Alibaba Speech Data (2000 hours) | 6400 | 95M | Online | UniASR streaming online unifying models | | [UniASR Cantonese (CHS)](https://modelscope.cn/models/damo/speech_UniASR_asr_2pass-cantonese-CHS-16k-common-vocab1468-tensorflow1-online/summary) | Cantonese (CHS) | Alibaba Speech Data (5000 hours) | 1468 | 95M | Online | UniASR streaming online unifying models | | [UniASR Indonesian](https://modelscope.cn/models/damo/speech_UniASR_asr_2pass-id-16k-common-vocab1067-tensorflow1-online/summary) | ID | Alibaba Speech Data (1000 hours) | 1067 | 95M | Online | UniASR streaming offline unifying models | | [UniASR Vietnamese](https://modelscope.cn/models/damo/speech_UniASR_asr_2pass-vi-16k-common-vocab1001-pytorch-online/summary) | VI | Alibaba Speech Data (1000 hours) | 1001 | 95M | Online | UniASR streaming offline unifying models | | [UniASR Spanish](https://modelscope.cn/models/damo/speech_UniASR_asr_2pass-es-16k-common-vocab3445-tensorflow1-online/summary) | ES | Alibaba Speech Data (1000 hours) | 3445 | 95M | Online | UniASR streaming online unifying models | | [UniASR Portuguese](https://modelscope.cn/models/damo/speech_UniASR_asr_2pass-pt-16k-common-vocab1617-tensorflow1-online/summary) | PT | Alibaba Speech Data (1000 hours) | 1617 | 95M | Online | UniASR streaming offline unifying models | | [UniASR French](https://modelscope.cn/models/damo/speech_UniASR_asr_2pass-fr-16k-common-vocab3472-tensorflow1-online/summary) | FR | Alibaba Speech Data (1000 hours) | 3472 | 95M | Online | UniASR streaming online unifying models | | [UniASR German](https://modelscope.cn/models/damo/speech_UniASR_asr_2pass-de-16k-common-vocab3690-tensorflow1-online/summary) | GE | Alibaba Speech Data (1000 hours) | 3690 | 95M | Online | UniASR streaming online unifying models | | [UniASR Persian](https://modelscope.cn/models/damo/speech_UniASR_asr_2pass-fa-16k-common-vocab1257-pytorch-online/summary) | FA | Alibaba Speech Data (1000 hours) | 1257 | 95M | Online | UniASR streaming offline unifying models | | [UniASR Burmese](https://modelscope.cn/models/damo/speech_UniASR_asr_2pass-my-16k-common-vocab696-pytorch/summary) | MY | Alibaba Speech Data (1000 hours) | 696 | 95M | Online | UniASR streaming offline unifying models | | [UniASR Hebrew](https://modelscope.cn/models/damo/speech_UniASR_asr_2pass-he-16k-common-vocab1085-pytorch/summary) | HE | Alibaba Speech Data (1000 hours) | 1085 | 95M | Online | UniASR streaming offline unifying models | | [UniASR Urdu](https://modelscope.cn/models/damo/speech_UniASR_asr_2pass-ur-16k-common-vocab877-pytorch/summary) | UR | Alibaba Speech Data (1000 hours) | 877 | 95M | Online | UniASR streaming offline unifying models | | [UniASR Turkish](https://modelscope.cn/models/damo/speech_UniASR_asr_2pass-tr-16k-common-vocab1582-pytorch/summary) | TR | Alibaba Speech Data (1000 hours) | 1582 | 95M | Online | UniASR streaming offline unifying models | #### Conformer Models | Model Name | Language | Training Data | Vocab Size | Parameter | Offline/Online | Notes | |:----------------------------------------------------------------------------------------------------------------------:|:--------:|:---------------------:|:----------:|:---------:|:--------------:|:--------------------------------------------------------------------------------------------------------------------------------| | [Conformer](https://modelscope.cn/models/damo/speech_conformer_asr_nat-zh-cn-16k-aishell1-vocab4234-pytorch/summary) | CN | AISHELL (178hours) | 4234 | 44M | Offline | Duration of input wav <= 20s | | [Conformer](https://www.modelscope.cn/models/damo/speech_conformer_asr_nat-zh-cn-16k-aishell2-vocab5212-pytorch/summary) | CN | AISHELL-2 (1000hours) | 5212 | 44M | Offline | Duration of input wav <= 20s | | [Conformer](https://modelscope.cn/models/damo/speech_conformer_asr-en-16k-vocab4199-pytorch/summary) | EN | Alibaba Speech Data (10000hours) | 4199 | 220M | Offline | Duration of input wav <= 20s | #### RNN-T Models ### Multi-talker Speech Recognition Models #### MFCCA Models | Model Name | Language | Training Data | Vocab Size | Parameter | Offline/Online | Notes | |:-------------------------------------------------------------------------------------------------------------:|:--------:|:------------------------------------------:|:----------:|:---------:|:--------------:|:--------------------------------------------------------------------------------------------------------------------------------| | [MFCCA](https://www.modelscope.cn/models/NPU-ASLP/speech_mfcca_asr-zh-cn-16k-alimeeting-vocab4950/summary) | CN | AliMeeting、AISHELL-4、Simudata (917hours) | 4950 | 45M | Offline | Duration of input wav <= 20s, channel of input wav <= 8 channel | ### Voice Activity Detection Models | Model Name | Training Data | Parameters | Sampling Rate | Notes | |:----------------------------------------------------------------------------------------------:|:----------------------------:|:----------:|:-------------:|:------| | [FSMN-VAD](https://modelscope.cn/models/damo/speech_fsmn_vad_zh-cn-16k-common-pytorch/summary) | Alibaba Speech Data (5000hours) | 0.4M | 16000 | | | [FSMN-VAD](https://modelscope.cn/models/damo/speech_fsmn_vad_zh-cn-8k-common/summary) | Alibaba Speech Data (5000hours) | 0.4M | 8000 | | ### Punctuation Restoration Models | Model Name | Training Data | Parameters | Vocab Size| Offline/Online | Notes | |:--------------------------------------------------------------------------------------------------------------------------:|:----------------------------:|:----------:|:----------:|:--------------:|:------| | [CT-Transformer](https://modelscope.cn/models/damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch/summary) | Alibaba Text Data | 70M | 272727 | Offline | offline punctuation model | | [CT-Transformer](https://modelscope.cn/models/damo/punc_ct-transformer_zh-cn-common-vad_realtime-vocab272727/summary) | Alibaba Text Data | 70M | 272727 | Online | online punctuation model | ### Language Models | Model Name | Training Data | Parameters | Vocab Size | Notes | |:----------------------------------------------------------------------------------------------------------------------:|:----------------------------:|:----------:|:----------:|:------| | [Transformer](https://www.modelscope.cn/models/damo/speech_transformer_lm_zh-cn-common-vocab8404-pytorch/summary) | Alibaba Speech Data (?hours) | 57M | 8404 | | ### Speaker Verification Models | Model Name | Training Data | Parameters | Number Speaker | Notes | |:-------------------------------------------------------------------------------------------------------------:|:-----------------:|:----------:|:----------:|:------| | [Xvector](https://www.modelscope.cn/models/damo/speech_xvector_sv-zh-cn-cnceleb-16k-spk3465-pytorch/summary) | CNCeleb (1,200 hours) | 17.5M | 3465 | Xvector, speaker verification, Chinese | | [Xvector](https://www.modelscope.cn/models/damo/speech_xvector_sv-en-us-callhome-8k-spk6135-pytorch/summary) | CallHome (60 hours) | 61M | 6135 | Xvector, speaker verification, English | ### Speaker Diarization Models | Model Name | Training Data | Parameters | Notes | |:----------------------------------------------------------------------------------------------------------------:|:-------------------:|:----------:|:------| | [SOND](https://www.modelscope.cn/models/damo/speech_diarization_sond-zh-cn-alimeeting-16k-n16k4-pytorch/summary) | AliMeeting (120 hours) | 40.5M | Speaker diarization, profiles and records, Chinese | | [SOND](https://www.modelscope.cn/models/damo/speech_diarization_sond-en-us-callhome-8k-n16k4-pytorch/summary) | CallHome (60 hours) | 12M | Speaker diarization, profiles and records, English | ### Timestamp Prediction Models | Model Name | Language | Training Data | Parameters | Notes | |:--------------------------------------------------------------------------------------------------:|:--------------:|:-------------------:|:----------:|:------| | [TP-Aligner](https://modelscope.cn/models/damo/speech_timestamp_prediction-v1-16k-offline/summary) | CN | Alibaba Speech Data (50000hours) | 37.8M | Timestamp prediction, Mandarin, middle size | ### Inverse Text Normalization (ITN) Models | Model Name | Language | Parameters | Notes | |:----------------------------------------------------------------------------------------------------------------:|:--------:|:----------:|:-------------------------| | [English](https://modelscope.cn/models/damo/speech_inverse_text_processing_fun-text-processing-itn-en/summary) | EN | 1.54M | ITN, ASR post-processing | | [Russian](https://modelscope.cn/models/damo/speech_inverse_text_processing_fun-text-processing-itn-ru/summary) | RU | 17.79M | ITN, ASR post-processing | | [Japanese](https://modelscope.cn/models/damo/speech_inverse_text_processing_fun-text-processing-itn-ja/summary) | JA | 6.8M | ITN, ASR post-processing | | [Korean](https://modelscope.cn/models/damo/speech_inverse_text_processing_fun-text-processing-itn-ko/summary) | KO | 1.28M | ITN, ASR post-processing | | [Indonesian](https://modelscope.cn/models/damo/speech_inverse_text_processing_fun-text-processing-itn-id/summary) | ID | 2.06M | ITN, ASR post-processing | | [Vietnamese](https://modelscope.cn/models/damo/speech_inverse_text_processing_fun-text-processing-itn-vi/summary) | VI | 0.92M | ITN, ASR post-processing | | [Tagalog](https://modelscope.cn/models/damo/speech_inverse_text_processing_fun-text-processing-itn-tl/summary) | TL | 0.65M | ITN, ASR post-processing | | [Spanish](https://modelscope.cn/models/damo/speech_inverse_text_processing_fun-text-processing-itn-es/summary) | ES | 1.32M | ITN, ASR post-processing | | [Portuguese](https://modelscope.cn/models/damo/speech_inverse_text_processing_fun-text-processing-itn-pt/summary) | PT | 1.28M | ITN, ASR post-processing | | [French](https://modelscope.cn/models/damo/speech_inverse_text_processing_fun-text-processing-itn-fr/summary) | FR | 4.39M | ITN, ASR post-processing | | [German](https://modelscope.cn/models/damo/speech_inverse_text_processing_fun-text-processing-itn-de/summary)| GE | 3.95M | ITN, ASR post-processing |