#!/usr/bin/env python3 # -*- encoding: utf-8 -*- # Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved. # MIT License (https://opensource.org/licenses/MIT) import types import torch from funasr.utils.torch_function import sequence_mask def export_rebuild_model(model, **kwargs): model.device = kwargs.get("device") model.make_pad_mask = sequence_mask(kwargs["max_seq_len"], flip=False) model.forward = types.MethodType(export_forward, model) model.export_dummy_inputs = types.MethodType(export_dummy_inputs, model) model.export_input_names = types.MethodType(export_input_names, model) model.export_output_names = types.MethodType(export_output_names, model) model.export_dynamic_axes = types.MethodType(export_dynamic_axes, model) model.export_name = types.MethodType(export_name, model) return model def export_forward( self, speech: torch.Tensor, speech_lengths: torch.Tensor, language: torch.Tensor, textnorm: torch.Tensor, **kwargs, ): # speech = speech.to(device="cuda") # speech_lengths = speech_lengths.to(device="cuda") language_query = self.embed(language.to(speech.device)).unsqueeze(1) textnorm_query = self.embed(textnorm.to(speech.device)).unsqueeze(1) speech = torch.cat((textnorm_query, speech), dim=1) event_emo_query = self.embed(torch.LongTensor([[1, 2]]).to(speech.device)).repeat( speech.size(0), 1, 1 ) input_query = torch.cat((language_query, event_emo_query), dim=1) speech = torch.cat((input_query, speech), dim=1) speech_lengths_new = speech_lengths + 4 encoder_out, encoder_out_lens = self.encoder(speech, speech_lengths_new) if isinstance(encoder_out, tuple): encoder_out = encoder_out[0] ctc_logits = self.ctc.ctc_lo(encoder_out) return ctc_logits, encoder_out_lens def export_dummy_inputs(self): speech = torch.randn(2, 30, 560) speech_lengths = torch.tensor([6, 30], dtype=torch.int32) language = torch.tensor([0, 0], dtype=torch.int32) textnorm = torch.tensor([15, 15], dtype=torch.int32) return (speech, speech_lengths, language, textnorm) def export_input_names(self): return ["speech", "speech_lengths", "language", "textnorm"] def export_output_names(self): return ["ctc_logits", "encoder_out_lens"] def export_dynamic_axes(self): return { "speech": {0: "batch_size", 1: "feats_length"}, "speech_lengths": {0: "batch_size"}, "language": {0: "batch_size"}, "textnorm": {0: "batch_size"}, "ctc_logits": {0: "batch_size", 1: "logits_length"}, "encoder_out_lens": {0: "batch_size"}, } def export_name(self): return "model.onnx"