#!/usr/bin/env python3 # -*- encoding: utf-8 -*- # Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved. # MIT License (https://opensource.org/licenses/MIT) import time import copy import torch import logging from torch.cuda.amp import autocast from typing import Union, Dict, List, Tuple, Optional from funasr.register import tables from funasr.models.ctc.ctc import CTC from funasr.utils import postprocess_utils from funasr.metrics.compute_acc import th_accuracy from funasr.train_utils.device_funcs import to_device from funasr.utils.datadir_writer import DatadirWriter from funasr.models.paraformer.search import Hypothesis from funasr.models.paraformer.cif_predictor import mae_loss from funasr.train_utils.device_funcs import force_gatherable from funasr.losses.label_smoothing_loss import LabelSmoothingLoss from funasr.models.transformer.utils.add_sos_eos import add_sos_eos from funasr.models.transformer.utils.nets_utils import make_pad_mask from funasr.utils.timestamp_tools import ts_prediction_lfr6_standard from funasr.utils.load_utils import load_audio_text_image_video, extract_fbank @tables.register("model_classes", "Paraformer") class Paraformer(torch.nn.Module): """ Author: Speech Lab of DAMO Academy, Alibaba Group Paraformer: Fast and Accurate Parallel Transformer for Non-autoregressive End-to-End Speech Recognition https://arxiv.org/abs/2206.08317 """ def __init__( self, specaug: Optional[str] = None, specaug_conf: Optional[Dict] = None, normalize: str = None, normalize_conf: Optional[Dict] = None, encoder: str = None, encoder_conf: Optional[Dict] = None, decoder: str = None, decoder_conf: Optional[Dict] = None, ctc: str = None, ctc_conf: Optional[Dict] = None, predictor: str = None, predictor_conf: Optional[Dict] = None, ctc_weight: float = 0.5, input_size: int = 80, vocab_size: int = -1, ignore_id: int = -1, blank_id: int = 0, sos: int = 1, eos: int = 2, lsm_weight: float = 0.0, length_normalized_loss: bool = False, # report_cer: bool = True, # report_wer: bool = True, # sym_space: str = "", # sym_blank: str = "", # extract_feats_in_collect_stats: bool = True, # predictor=None, predictor_weight: float = 0.0, predictor_bias: int = 0, sampling_ratio: float = 0.2, share_embedding: bool = False, # preencoder: Optional[AbsPreEncoder] = None, # postencoder: Optional[AbsPostEncoder] = None, use_1st_decoder_loss: bool = False, **kwargs, ): super().__init__() if specaug is not None: specaug_class = tables.specaug_classes.get(specaug) specaug = specaug_class(**specaug_conf) if normalize is not None: normalize_class = tables.normalize_classes.get(normalize) normalize = normalize_class(**normalize_conf) encoder_class = tables.encoder_classes.get(encoder) encoder = encoder_class(input_size=input_size, **encoder_conf) encoder_output_size = encoder.output_size() if decoder is not None: decoder_class = tables.decoder_classes.get(decoder) decoder = decoder_class( vocab_size=vocab_size, encoder_output_size=encoder_output_size, **decoder_conf, ) if ctc_weight > 0.0: if ctc_conf is None: ctc_conf = {} ctc = CTC(odim=vocab_size, encoder_output_size=encoder_output_size, **ctc_conf) if predictor is not None: predictor_class = tables.predictor_classes.get(predictor) predictor = predictor_class(**predictor_conf) # note that eos is the same as sos (equivalent ID) self.blank_id = blank_id self.sos = sos if sos is not None else vocab_size - 1 self.eos = eos if eos is not None else vocab_size - 1 self.vocab_size = vocab_size self.ignore_id = ignore_id self.ctc_weight = ctc_weight # self.token_list = token_list.copy() # # self.frontend = frontend self.specaug = specaug self.normalize = normalize # self.preencoder = preencoder # self.postencoder = postencoder self.encoder = encoder # # if not hasattr(self.encoder, "interctc_use_conditioning"): # self.encoder.interctc_use_conditioning = False # if self.encoder.interctc_use_conditioning: # self.encoder.conditioning_layer = torch.nn.Linear( # vocab_size, self.encoder.output_size() # ) # # self.error_calculator = None # if ctc_weight == 1.0: self.decoder = None else: self.decoder = decoder self.criterion_att = LabelSmoothingLoss( size=vocab_size, padding_idx=ignore_id, smoothing=lsm_weight, normalize_length=length_normalized_loss, ) # # if report_cer or report_wer: # self.error_calculator = ErrorCalculator( # token_list, sym_space, sym_blank, report_cer, report_wer # ) # if ctc_weight == 0.0: self.ctc = None else: self.ctc = ctc # # self.extract_feats_in_collect_stats = extract_feats_in_collect_stats self.predictor = predictor self.predictor_weight = predictor_weight self.predictor_bias = predictor_bias self.sampling_ratio = sampling_ratio self.criterion_pre = mae_loss(normalize_length=length_normalized_loss) self.share_embedding = share_embedding if self.share_embedding: self.decoder.embed = None self.use_1st_decoder_loss = use_1st_decoder_loss self.length_normalized_loss = length_normalized_loss self.beam_search = None self.error_calculator = None def forward( self, speech: torch.Tensor, speech_lengths: torch.Tensor, text: torch.Tensor, text_lengths: torch.Tensor, **kwargs, ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]: """Encoder + Decoder + Calc loss Args: speech: (Batch, Length, ...) speech_lengths: (Batch, ) text: (Batch, Length) text_lengths: (Batch,) """ if len(text_lengths.size()) > 1: text_lengths = text_lengths[:, 0] if len(speech_lengths.size()) > 1: speech_lengths = speech_lengths[:, 0] batch_size = speech.shape[0] # Encoder encoder_out, encoder_out_lens = self.encode(speech, speech_lengths) loss_ctc, cer_ctc = None, None loss_pre = None stats = dict() # decoder: CTC branch if self.ctc_weight != 0.0: loss_ctc, cer_ctc = self._calc_ctc_loss( encoder_out, encoder_out_lens, text, text_lengths ) # Collect CTC branch stats stats["loss_ctc"] = loss_ctc.detach() if loss_ctc is not None else None stats["cer_ctc"] = cer_ctc # decoder: Attention decoder branch loss_att, acc_att, cer_att, wer_att, loss_pre, pre_loss_att = self._calc_att_loss( encoder_out, encoder_out_lens, text, text_lengths ) # 3. CTC-Att loss definition if self.ctc_weight == 0.0: loss = loss_att + loss_pre * self.predictor_weight else: loss = ( self.ctc_weight * loss_ctc + (1 - self.ctc_weight) * loss_att + loss_pre * self.predictor_weight ) # Collect Attn branch stats stats["loss_att"] = loss_att.detach() if loss_att is not None else None stats["pre_loss_att"] = pre_loss_att.detach() if pre_loss_att is not None else None stats["acc"] = acc_att stats["cer"] = cer_att stats["wer"] = wer_att stats["loss_pre"] = loss_pre.detach().cpu() if loss_pre is not None else None stats["loss"] = torch.clone(loss.detach()) stats["batch_size"] = batch_size # force_gatherable: to-device and to-tensor if scalar for DataParallel if self.length_normalized_loss: batch_size = (text_lengths + self.predictor_bias).sum() loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device) return loss, stats, weight def encode( self, speech: torch.Tensor, speech_lengths: torch.Tensor, **kwargs, ) -> Tuple[torch.Tensor, torch.Tensor]: """Encoder. Note that this method is used by asr_inference.py Args: speech: (Batch, Length, ...) speech_lengths: (Batch, ) ind: int """ with autocast(False): # Data augmentation if self.specaug is not None and self.training: speech, speech_lengths = self.specaug(speech, speech_lengths) # Normalization for feature: e.g. Global-CMVN, Utterance-CMVN if self.normalize is not None: speech, speech_lengths = self.normalize(speech, speech_lengths) # Forward encoder encoder_out, encoder_out_lens, _ = self.encoder(speech, speech_lengths) if isinstance(encoder_out, tuple): encoder_out = encoder_out[0] return encoder_out, encoder_out_lens def calc_predictor(self, encoder_out, encoder_out_lens): encoder_out_mask = ( ~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :] ).to(encoder_out.device) pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index = self.predictor( encoder_out, None, encoder_out_mask, ignore_id=self.ignore_id ) return pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index def cal_decoder_with_predictor( self, encoder_out, encoder_out_lens, sematic_embeds, ys_pad_lens ): decoder_outs = self.decoder(encoder_out, encoder_out_lens, sematic_embeds, ys_pad_lens) decoder_out = decoder_outs[0] decoder_out = torch.log_softmax(decoder_out, dim=-1) return decoder_out, ys_pad_lens def _calc_att_loss( self, encoder_out: torch.Tensor, encoder_out_lens: torch.Tensor, ys_pad: torch.Tensor, ys_pad_lens: torch.Tensor, ): encoder_out_mask = ( ~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :] ).to(encoder_out.device) if self.predictor_bias == 1: _, ys_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id) ys_pad_lens = ys_pad_lens + self.predictor_bias pre_acoustic_embeds, pre_token_length, _, pre_peak_index = self.predictor( encoder_out, ys_pad, encoder_out_mask, ignore_id=self.ignore_id ) # 0. sampler decoder_out_1st = None pre_loss_att = None if self.sampling_ratio > 0.0: sematic_embeds, decoder_out_1st = self.sampler( encoder_out, encoder_out_lens, ys_pad, ys_pad_lens, pre_acoustic_embeds ) else: sematic_embeds = pre_acoustic_embeds # 1. Forward decoder decoder_outs = self.decoder(encoder_out, encoder_out_lens, sematic_embeds, ys_pad_lens) decoder_out, _ = decoder_outs[0], decoder_outs[1] if decoder_out_1st is None: decoder_out_1st = decoder_out # 2. Compute attention loss loss_att = self.criterion_att(decoder_out, ys_pad) acc_att = th_accuracy( decoder_out_1st.view(-1, self.vocab_size), ys_pad, ignore_label=self.ignore_id, ) loss_pre = self.criterion_pre(ys_pad_lens.type_as(pre_token_length), pre_token_length) # Compute cer/wer using attention-decoder if self.training or self.error_calculator is None: cer_att, wer_att = None, None else: ys_hat = decoder_out_1st.argmax(dim=-1) cer_att, wer_att = self.error_calculator(ys_hat.cpu(), ys_pad.cpu()) return loss_att, acc_att, cer_att, wer_att, loss_pre, pre_loss_att def sampler(self, encoder_out, encoder_out_lens, ys_pad, ys_pad_lens, pre_acoustic_embeds): tgt_mask = (~make_pad_mask(ys_pad_lens, maxlen=ys_pad_lens.max())[:, :, None]).to( ys_pad.device ) ys_pad_masked = ys_pad * tgt_mask[:, :, 0] if self.share_embedding: ys_pad_embed = self.decoder.output_layer.weight[ys_pad_masked] else: ys_pad_embed = self.decoder.embed(ys_pad_masked) with torch.no_grad(): decoder_outs = self.decoder( encoder_out, encoder_out_lens, pre_acoustic_embeds, ys_pad_lens ) decoder_out, _ = decoder_outs[0], decoder_outs[1] pred_tokens = decoder_out.argmax(-1) nonpad_positions = ys_pad.ne(self.ignore_id) seq_lens = (nonpad_positions).sum(1) same_num = ((pred_tokens == ys_pad) & nonpad_positions).sum(1) input_mask = torch.ones_like(nonpad_positions) bsz, seq_len = ys_pad.size() for li in range(bsz): target_num = ( ((seq_lens[li] - same_num[li].sum()).float()) * self.sampling_ratio ).long() if target_num > 0: input_mask[li].scatter_( dim=0, index=torch.randperm(seq_lens[li])[:target_num].to(input_mask.device), value=0, ) input_mask = input_mask.eq(1) input_mask = input_mask.masked_fill(~nonpad_positions, False) input_mask_expand_dim = input_mask.unsqueeze(2).to(pre_acoustic_embeds.device) sematic_embeds = pre_acoustic_embeds.masked_fill( ~input_mask_expand_dim, 0 ) + ys_pad_embed.masked_fill(input_mask_expand_dim, 0) return sematic_embeds * tgt_mask, decoder_out * tgt_mask def _calc_ctc_loss( self, encoder_out: torch.Tensor, encoder_out_lens: torch.Tensor, ys_pad: torch.Tensor, ys_pad_lens: torch.Tensor, ): # Calc CTC loss loss_ctc = self.ctc(encoder_out, encoder_out_lens, ys_pad, ys_pad_lens) # Calc CER using CTC cer_ctc = None if not self.training and self.error_calculator is not None: ys_hat = self.ctc.argmax(encoder_out).data cer_ctc = self.error_calculator(ys_hat.cpu(), ys_pad.cpu(), is_ctc=True) return loss_ctc, cer_ctc def init_beam_search( self, **kwargs, ): from funasr.models.paraformer.search import BeamSearchPara from funasr.models.transformer.scorers.ctc import CTCPrefixScorer from funasr.models.transformer.scorers.length_bonus import LengthBonus # 1. Build ASR model scorers = {} if self.ctc != None: ctc = CTCPrefixScorer(ctc=self.ctc, eos=self.eos) scorers.update(ctc=ctc) token_list = kwargs.get("token_list") scorers.update( length_bonus=LengthBonus(len(token_list)), ) # 3. Build ngram model # ngram is not supported now ngram = None scorers["ngram"] = ngram weights = dict( decoder=1.0 - kwargs.get("decoding_ctc_weight"), ctc=kwargs.get("decoding_ctc_weight", 0.0), lm=kwargs.get("lm_weight", 0.0), ngram=kwargs.get("ngram_weight", 0.0), length_bonus=kwargs.get("penalty", 0.0), ) beam_search = BeamSearchPara( beam_size=kwargs.get("beam_size", 2), weights=weights, scorers=scorers, sos=self.sos, eos=self.eos, vocab_size=len(token_list), token_list=token_list, pre_beam_score_key=None if self.ctc_weight == 1.0 else "full", ) # beam_search.to(device=kwargs.get("device", "cpu"), dtype=getattr(torch, kwargs.get("dtype", "float32"))).eval() # for scorer in scorers.values(): # if isinstance(scorer, torch.nn.Module): # scorer.to(device=kwargs.get("device", "cpu"), dtype=getattr(torch, kwargs.get("dtype", "float32"))).eval() self.beam_search = beam_search def inference( self, data_in, data_lengths=None, key: list = None, tokenizer=None, frontend=None, **kwargs, ): # init beamsearch is_use_ctc = kwargs.get("decoding_ctc_weight", 0.0) > 0.00001 and self.ctc != None is_use_lm = ( kwargs.get("lm_weight", 0.0) > 0.00001 and kwargs.get("lm_file", None) is not None ) pred_timestamp = kwargs.get("pred_timestamp", False) if self.beam_search is None and (is_use_lm or is_use_ctc): logging.info("enable beam_search") self.init_beam_search(**kwargs) self.nbest = kwargs.get("nbest", 1) meta_data = {} if ( isinstance(data_in, torch.Tensor) and kwargs.get("data_type", "sound") == "fbank" ): # fbank speech, speech_lengths = data_in, data_lengths if len(speech.shape) < 3: speech = speech[None, :, :] if speech_lengths is not None: speech_lengths = speech_lengths.squeeze(-1) else: speech_lengths = speech.shape[1] else: # extract fbank feats time1 = time.perf_counter() audio_sample_list = load_audio_text_image_video( data_in, fs=frontend.fs, audio_fs=kwargs.get("fs", 16000), data_type=kwargs.get("data_type", "sound"), tokenizer=tokenizer, ) time2 = time.perf_counter() meta_data["load_data"] = f"{time2 - time1:0.3f}" speech, speech_lengths = extract_fbank( audio_sample_list, data_type=kwargs.get("data_type", "sound"), frontend=frontend ) time3 = time.perf_counter() meta_data["extract_feat"] = f"{time3 - time2:0.3f}" meta_data["batch_data_time"] = ( speech_lengths.sum().item() * frontend.frame_shift * frontend.lfr_n / 1000 ) speech = speech.to(device=kwargs["device"]) speech_lengths = speech_lengths.to(device=kwargs["device"]) # Encoder if kwargs.get("fp16", False): speech = speech.half() encoder_out, encoder_out_lens = self.encode(speech, speech_lengths) if isinstance(encoder_out, tuple): encoder_out = encoder_out[0] # predictor predictor_outs = self.calc_predictor(encoder_out, encoder_out_lens) pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index = ( predictor_outs[0], predictor_outs[1], predictor_outs[2], predictor_outs[3], ) pre_token_length = pre_token_length.round().long() if torch.max(pre_token_length) < 1: return [] decoder_outs = self.cal_decoder_with_predictor( encoder_out, encoder_out_lens, pre_acoustic_embeds, pre_token_length ) decoder_out, ys_pad_lens = decoder_outs[0], decoder_outs[1] results = [] b, n, d = decoder_out.size() if isinstance(key[0], (list, tuple)): key = key[0] if len(key) < b: key = key * b for i in range(b): x = encoder_out[i, : encoder_out_lens[i], :] am_scores = decoder_out[i, : pre_token_length[i], :] if self.beam_search is not None: nbest_hyps = self.beam_search( x=x, am_scores=am_scores, maxlenratio=kwargs.get("maxlenratio", 0.0), minlenratio=kwargs.get("minlenratio", 0.0), ) nbest_hyps = nbest_hyps[: self.nbest] else: yseq = am_scores.argmax(dim=-1) score = am_scores.max(dim=-1)[0] score = torch.sum(score, dim=-1) # pad with mask tokens to ensure compatibility with sos/eos tokens yseq = torch.tensor([self.sos] + yseq.tolist() + [self.eos], device=yseq.device) nbest_hyps = [Hypothesis(yseq=yseq, score=score)] for nbest_idx, hyp in enumerate(nbest_hyps): ibest_writer = None if kwargs.get("output_dir") is not None: if not hasattr(self, "writer"): self.writer = DatadirWriter(kwargs.get("output_dir")) ibest_writer = self.writer[f"{nbest_idx+1}best_recog"] # remove sos/eos and get results last_pos = -1 if isinstance(hyp.yseq, list): token_int = hyp.yseq[1:last_pos] else: token_int = hyp.yseq[1:last_pos].tolist() # remove blank symbol id, which is assumed to be 0 token_int = list( filter( lambda x: x != self.eos and x != self.sos and x != self.blank_id, token_int ) ) if tokenizer is not None: # Change integer-ids to tokens token = tokenizer.ids2tokens(token_int) text_postprocessed = tokenizer.tokens2text(token) if pred_timestamp: timestamp_str, timestamp = ts_prediction_lfr6_standard( pre_peak_index[i], alphas[i], copy.copy(token), vad_offset=kwargs.get("begin_time", 0), upsample_rate=1, ) if not hasattr(tokenizer, "bpemodel"): text_postprocessed, time_stamp_postprocessed, _ = postprocess_utils.sentence_postprocess(token, timestamp) result_i = {"key": key[i], "text": text_postprocessed, "timestamp": time_stamp_postprocessed,} else: if not hasattr(tokenizer, "bpemodel"): text_postprocessed, _ = postprocess_utils.sentence_postprocess(token) result_i = {"key": key[i], "text": text_postprocessed} if ibest_writer is not None: ibest_writer["token"][key[i]] = " ".join(token) # ibest_writer["text"][key[i]] = text ibest_writer["text"][key[i]] = text_postprocessed else: result_i = {"key": key[i], "token_int": token_int} results.append(result_i) return results, meta_data def export(self, **kwargs): from .export_meta import export_rebuild_model if "max_seq_len" not in kwargs: kwargs["max_seq_len"] = 512 models = export_rebuild_model(model=self, **kwargs) return models