## Using paraformer with libtorch ### Introduction - Model comes from [speech_paraformer](https://www.modelscope.cn/models/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/summary). ### Steps: 1. Export the model. - Command: (`Tips`: torch >= 1.11.0 is required.) ```shell python -m funasr.export.export_model [model_name] [export_dir] false ``` `model_name`: the model is to export. `export_dir`: the dir where the onnx is export. More details ref to ([export docs](https://github.com/alibaba-damo-academy/FunASR/tree/main/funasr/export)) - `e.g.`, Export model from modelscope ```shell python -m funasr.export.export_model --model-name damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch --export-dir ./export --type torch --quantize False ``` - `e.g.`, Export model from local path, the model'name must be `model.pb`. ```shell python -m funasr.export.export_model --model-name ./damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch --export-dir ./export --type torch --quantize False ``` 2. Install the `torch_paraformer`. ```shell git clone https://github.com/alibaba/FunASR.git && cd FunASR cd funasr/runtime/python/libtorch python setup.py install ``` 3. Run the demo. - Model_dir: the model path, which contains `model.torchscripts`, `config.yaml`, `am.mvn`. - Input: wav formt file, support formats: `str, np.ndarray, List[str]` - Output: `List[str]`: recognition result. - Example: ```python from torch_paraformer import Paraformer model_dir = "/nfs/zhifu.gzf/export/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch" model = Paraformer(model_dir, batch_size=1) wav_path = ['/nfs/zhifu.gzf/export/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/example/asr_example.wav'] result = model(wav_path) print(result) ``` ## Speed Environment:Intel(R) Xeon(R) Platinum 8163 CPU @ 2.50GHz Test [wav, 5.53s, 100 times avg.](https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav) | Backend | RTF (FP32) | |:--------:|:----------:| | Pytorch | 0.110 | | Libtorch | 0.048 | | Onnx | 0.038 | ## Acknowledge