import torch import copy from funasr.register import tables from funasr.utils.load_utils import extract_fbank, load_audio_text_image_video @tables.register("dataset_classes", "AudioLLMDataset") class AudioLLMDataset(torch.utils.data.Dataset): """ AudioLLMDataset """ def __init__(self, path, index_ds: str = None, frontend=None, tokenizer=None, int_pad_value: int = -1, float_pad_value: float = 0.0, **kwargs): super().__init__() index_ds_class = tables.index_ds_classes.get(index_ds) self.index_ds = index_ds_class(path, **kwargs) preprocessor_speech = kwargs.get("preprocessor_speech", None) if preprocessor_speech: preprocessor_speech_class = tables.preprocessor_classes.get(preprocessor_speech) preprocessor_speech = preprocessor_speech_class(**kwargs.get("preprocessor_speech_conf")) self.preprocessor_speech = preprocessor_speech preprocessor_text = kwargs.get("preprocessor_text", None) if preprocessor_text: preprocessor_text_class = tables.preprocessor_classes.get(preprocessor_text) preprocessor_text = preprocessor_text_class(**kwargs.get("preprocessor_text_conf")) self.preprocessor_text = preprocessor_text self.frontend = frontend self.fs = 16000 if frontend is None else frontend.fs self.data_type = "sound" self.tokenizer = tokenizer self.int_pad_value = int_pad_value self.float_pad_value = float_pad_value self.prompt = kwargs.get("prompt", "Transcribe speech to text.") self.prompt_pre = "USER: \nINSTRUCTION: {}\nINPUT: ".format( self.prompt) # "USER: \nINSTRUCTION: {}\nnINPUT: {}\nASSISTANT: " self.prompt_af = "" def get_source_len(self, index): item = self.index_ds[index] return self.index_ds.get_source_len(item) def get_target_len(self, index): item = self.index_ds[index] return self.index_ds.get_target_len(item) def __len__(self): return len(self.index_ds) def __getitem__(self, index): item = self.index_ds[index] # import pdb; # pdb.set_trace() source = item["source"] data_src = load_audio_text_image_video(source, fs=self.fs) if self.preprocessor_speech: data_src = self.preprocessor_speech(data_src, fs=self.fs) speech, speech_lengths = extract_fbank(data_src, data_type=self.data_type, frontend=self.frontend, is_final=True) # speech: [b, T, d] speech = speech.sequeeze(0) target = item["target"] if self.preprocessor_text: target = self.preprocessor_text(target) prompt_ids_pre = self.tokenizer.encode(self.prompt_pre) # [bos,prompt] prompt_pre_length = len(prompt_ids_pre) prompt_input = "{}{}".format(self.prompt_pre, target) prompt_input_ids = self.tokenizer.encode(prompt_input) audio_length = len(prompt_input_ids) - prompt_pre_length input_ids = prompt_input_ids + [self.tokenizer.pad_token_id] input_ids = torch.tensor(input_ids, dtype=torch.int64) #[bos, prompt, input, pad] input_ids[prompt_pre_length:] = -1 # [bos, prompt,-1,-1] attention_mask = input_ids.ge(-1) # [true, true, true, true], length mask prompt_answer = "{}{}".format(self.prompt_pre, target) prompt_answer_ids = self.tokenizer.encode(prompt_answer) answer_length = len(prompt_answer_ids) - prompt_pre_length labels_ids = copy.deepcopy(prompt_input_ids) + [self.tokenizer.eos_token_id] labels_ids = torch.tensor(labels_ids, dtype=torch.int64) # [bos, prompt, input, eos] labels_ids[:prompt_pre_length] = -1 # [-1, -1, input, eos] label_mask = labels_ids.ge(0) # [False,False,True,True] labels_ids[~label_mask] = self.IGNORE_INDEX # [-100,-100,input,eos] audio_mask = [0] * prompt_pre_length + [1] * audio_length torch.tensor(audio_mask, dtype=torch.float32) ids = self.tokenizer.encode(target) text = torch.tensor(ids, dtype=torch.int64) text_lengths = torch.tensor([len(ids)], dtype=torch.int32) return {"speech": speech, "speech_lengths": speech_lengths, "text": text, "text_lengths": text_lengths, "input_ids": input_ids, "attention_mask": attention_mask, "labels_ids": labels_ids, "label_mask": label_mask, "audio_mask": audio_mask, } def collator(self, samples: list=None): outputs = {} for sample in samples: for key in sample.keys(): if key not in outputs: outputs[key] = [] outputs[key].append(sample[key]) for key, data_list in outputs.items(): if isinstance(data_list[0], torch.Tensor): if data_list[0].dtype == torch.int64: pad_value = self.int_pad_value else: pad_value = self.float_pad_value outputs[key] = torch.nn.utils.rnn.pad_sequence(data_list, batch_first=True, padding_value=pad_value) return outputs