import torch import copy import logging import numpy as np from typing import Any, List, Tuple, Union def time_stamp_lfr6_pl(us_alphas, us_cif_peak, char_list, begin_time=0.0, end_time=None): START_END_THRESHOLD = 5 TIME_RATE = 10.0 * 6 / 1000 / 3 # 3 times upsampled if len(us_alphas.shape) == 3: alphas, cif_peak = us_alphas[0], us_cif_peak[0] # support inference batch_size=1 only else: alphas, cif_peak = us_alphas, us_cif_peak num_frames = cif_peak.shape[0] if char_list[-1] == '': char_list = char_list[:-1] # char_list = [i for i in text] timestamp_list = [] # for bicif model trained with large data, cif2 actually fires when a character starts # so treat the frames between two peaks as the duration of the former token fire_place = torch.where(cif_peak>1.0-1e-4)[0].cpu().numpy() - 1.5 num_peak = len(fire_place) assert num_peak == len(char_list) + 1 # number of peaks is supposed to be number of tokens + 1 # begin silence if fire_place[0] > START_END_THRESHOLD: char_list.insert(0, '') timestamp_list.append([0.0, fire_place[0]*TIME_RATE]) # tokens timestamp for i in range(len(fire_place)-1): # the peak is always a little ahead of the start time # timestamp_list.append([(fire_place[i]-1.2)*TIME_RATE, fire_place[i+1]*TIME_RATE]) timestamp_list.append([(fire_place[i])*TIME_RATE, fire_place[i+1]*TIME_RATE]) # cut the duration to token and sil of the 0-weight frames last long # tail token and end silence if num_frames - fire_place[-1] > START_END_THRESHOLD: _end = (num_frames + fire_place[-1]) / 2 timestamp_list[-1][1] = _end*TIME_RATE timestamp_list.append([_end*TIME_RATE, num_frames*TIME_RATE]) char_list.append("") else: timestamp_list[-1][1] = num_frames*TIME_RATE if begin_time: # add offset time in model with vad for i in range(len(timestamp_list)): timestamp_list[i][0] = timestamp_list[i][0] + begin_time / 1000.0 timestamp_list[i][1] = timestamp_list[i][1] + begin_time / 1000.0 res_txt = "" for char, timestamp in zip(char_list, timestamp_list): res_txt += "{} {} {};".format(char, timestamp[0], timestamp[1]) res = [] for char, timestamp in zip(char_list, timestamp_list): if char != '': res.append([int(timestamp[0] * 1000), int(timestamp[1] * 1000)]) return res