import unittest import numpy as np from modelscope.pipelines import pipeline from modelscope.utils.constant import Tasks from modelscope.utils.logger import get_logger logger = get_logger() class TestXVectorInferencePipelines(unittest.TestCase): def test_funasr_path(self): import funasr import os logger.info("run_dir:{0} ; funasr_path: {1}".format(os.getcwd(), funasr.__file__)) def test_inference_pipeline(self): inference_sv_pipline = pipeline( task=Tasks.speaker_verification, model='damo/speech_xvector_sv-zh-cn-cnceleb-16k-spk3465-pytorch' ) # 提取不同句子的说话人嵌入码 rec_result = inference_sv_pipline( audio_in='https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/sv_example_enroll.wav') enroll = rec_result["spk_embedding"] rec_result = inference_sv_pipline( audio_in='https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/sv_example_same.wav') same = rec_result["spk_embedding"] rec_result = inference_sv_pipline( audio_in='https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/sv_example_different.wav') different = rec_result["spk_embedding"] # 对相同的说话人计算余弦相似度 sv_threshold = 0.9465 same_cos = np.sum(enroll * same) / (np.linalg.norm(enroll) * np.linalg.norm(same)) same_cos = max(same_cos - sv_threshold, 0.0) / (1.0 - sv_threshold) * 100.0 logger.info("Similarity: {}".format(same_cos)) # 对不同的说话人计算余弦相似度 diff_cos = np.sum(enroll * different) / (np.linalg.norm(enroll) * np.linalg.norm(different)) diff_cos = max(diff_cos - sv_threshold, 0.0) / (1.0 - sv_threshold) * 100.0 logger.info("Similarity: {}".format(diff_cos)) if __name__ == '__main__': unittest.main()