class modelscope_args(): def __init__(self, task: str = "", model: str = "damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch", data_path: str = None, output_dir: str = None, model_revision: str = None, dataset_type: str = "small", batch_bins: int = 2000, max_epoch: int = None, accum_grad: int = None, keep_nbest_models: int = None, optim: str = None, lr: float = None, scheduler: str = None, scheduler_conf: dict = None, specaug: str = None, specaug_conf: dict = None, ): self.task = task self.model = model self.data_path = data_path self.output_dir = output_dir self.model_revision = model_revision self.dataset_type = dataset_type self.batch_bins = batch_bins self.max_epoch = max_epoch self.accum_grad = accum_grad self.keep_nbest_models = keep_nbest_models self.optim = optim self.lr = lr self.scheduler = scheduler self.scheduler_conf = scheduler_conf self.specaug = specaug self.specaug_conf = specaug_conf