import logging import torch from funasr.register import tables @tables.register("dataloader_classes", "DataloaderMapStyle") def DataloaderMapStyle(frontend=None, tokenizer=None, **kwargs): # dataset logging.info("Build dataloader") dataset_class = tables.dataset_classes.get(kwargs.get("dataset", "AudioDataset")) dataset_tr = dataset_class(kwargs.get("train_data_set_list"), frontend=frontend, tokenizer=tokenizer, is_training=True, **kwargs.get("dataset_conf")) dataset_val = dataset_class(kwargs.get("valid_data_set_list"), frontend=frontend, tokenizer=tokenizer, is_training=False, **kwargs.get("dataset_conf")) # dataloader batch_sampler = kwargs["dataset_conf"].get("batch_sampler", "DynamicBatchLocalShuffleSampler") batch_sampler_val = None if batch_sampler is not None: batch_sampler_class = tables.batch_sampler_classes.get(batch_sampler) batch_sampler = batch_sampler_class(dataset_tr, **kwargs.get("dataset_conf")) batch_sampler_val = batch_sampler_class(dataset_val, is_training=False, **kwargs.get("dataset_conf")) dataloader_tr = torch.utils.data.DataLoader(dataset_tr, collate_fn=dataset_tr.collator, **batch_sampler) dataloader_val = torch.utils.data.DataLoader(dataset_val, collate_fn=dataset_val.collator, **batch_sampler_val) return dataloader_tr, dataloader_val @tables.register("dataloader_classes", "DataloaderIterable") def DataloaderIterable(frontend=None, tokenizer=None, **kwargs): logging.info("Build dataloader") dataset_class = tables.dataset_classes.get(kwargs.get("dataset", "LargeDataset")) dataset_tr = dataset_class(kwargs.get("train_data_set_list"), frontend=frontend, tokenizer=tokenizer, is_training=True, **kwargs.get("dataset_conf")) dataset_val = dataset_class(kwargs.get("valid_data_set_list"), frontend=frontend, tokenizer=tokenizer, is_training=False, **kwargs.get("dataset_conf")) return dataset_tr, dataset_val