# Advanced Development Guide (File transcription service) FunASR provides a Chinese offline file transcription service that can be deployed locally or on a cloud server with just one click. The core of the service is the FunASR runtime SDK, which has been open-sourced. FunASR-runtime combines various capabilities such as speech endpoint detection (VAD), large-scale speech recognition (ASR) using Paraformer-large, and punctuation detection (PUNC), which have all been open-sourced by the speech laboratory of DAMO Academy on the Modelscope community. This enables accurate and efficient high-concurrency transcription of audio files. This document serves as a development guide for the FunASR offline file transcription service. If you wish to quickly experience the offline file transcription service, please refer to the one-click deployment example for the FunASR offline file transcription service ([docs](./SDK_tutorial.md)). ## Installation of Docker The following steps are for manually installing Docker and Docker images. If your Docker image has already been launched, you can ignore this step. ### Installation of Docker environment ```shell # Ubuntu: curl -fsSL https://test.docker.com -o test-docker.sh sudo sh test-docker.sh # Debian: curl -fsSL https://get.docker.com -o get-docker.sh sudo sh get-docker.sh # CentOS: curl -fsSL https://get.docker.com | bash -s docker --mirror Aliyun # MacOS: brew install --cask --appdir=/Applications docker ``` More details could ref to [docs](https://alibaba-damo-academy.github.io/FunASR/en/installation/docker.html) ### Starting Docker ```shell sudo systemctl start docker ``` ### Pulling and launching images Use the following command to pull and launch the Docker image for the FunASR runtime-SDK: ```shell sudo docker pull registry.cn-hangzhou.aliyuncs.com/funasr_repo/funasr:funasr-runtime-sdk-cpu-0.2.1 sudo docker run -p 10095:10095 -it --privileged=true -v /root:/workspace/models registry.cn-hangzhou.aliyuncs.com/funasr_repo/funasr:funasr-runtime-sdk-cpu-0.2.1 ``` Introduction to command parameters: ```text -p :: In the example, host machine (ECS) port 10095 is mapped to port 10095 in the Docker container. Make sure that port 10095 is open in the ECS security rules. -v :: In the example, the host machine path /root is mounted to the Docker path /workspace/models. ``` ## Starting the server Use the flollowing script to start the server : ```shell nohup bash run_server.sh \ --download-model-dir /workspace/models \ --vad-dir damo/speech_fsmn_vad_zh-cn-16k-common-onnx \ --model-dir damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-onnx \ --punc-dir damo/punc_ct-transformer_zh-cn-common-vocab272727-onnx > log.out 2>&1 & # If you want to close ssl,please add:--certfile 0 # If you want to deploy the timestamp or hotword model, please set --model-dir to the corresponding model: # speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-onnx(timestamp) # damo/speech_paraformer-large-contextual_asr_nat-zh-cn-16k-common-vocab8404-onnx(hotword) ``` More details about the script run_server.sh: The FunASR-wss-server supports downloading models from Modelscope. You can set the model download address (--download-model-dir, default is /workspace/models) and the model ID (--model-dir, --vad-dir, --punc-dir). Here is an example: ```shell cd /workspace/FunASR/funasr/runtime/websocket/build/bin ./funasr-wss-server \ --download-model-dir /workspace/models \ --model-dir damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-onnx \ --vad-dir damo/speech_fsmn_vad_zh-cn-16k-common-onnx \ --punc-dir damo/punc_ct-transformer_zh-cn-common-vocab272727-onnx \ --decoder-thread-num 32 \ --io-thread-num 8 \ --port 10095 \ --certfile ../../../ssl_key/server.crt \ --keyfile ../../../ssl_key/server.key ``` Introduction to command parameters: ```text --download-model-dir: Model download address, download models from Modelscope by setting the model ID. --model-dir: Modelscope model ID. --quantize: True for quantized ASR model, False for non-quantized ASR model. Default is True. --vad-dir: Modelscope model ID. --vad-quant: True for quantized VAD model, False for non-quantized VAD model. Default is True. --punc-dir: Modelscope model ID. --punc-quant: True for quantized PUNC model, False for non-quantized PUNC model. Default is True. --port: Port number that the server listens on. Default is 10095. --decoder-thread-num: Number of inference threads that the server starts. Default is 8. --io-thread-num: Number of IO threads that the server starts. Default is 1. --certfile : SSL certificate file. Default is ../../../ssl_key/server.crt. If you want to close ssl,set "" --keyfile : SSL key file. Default is ../../../ssl_key/server.key. If you want to close ssl,set "" ``` The FunASR-wss-server also supports loading models from a local path (see Preparing Model Resources for detailed instructions on preparing local model resources). Here is an example: ```shell cd /workspace/FunASR/funasr/runtime/websocket/build/bin ./funasr-wss-server \ --model-dir /workspace/models/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-onnx \ --vad-dir /workspace/models/damo/speech_fsmn_vad_zh-cn-16k-common-onnx \ --punc-dir /workspace/models/damo/punc_ct-transformer_zh-cn-common-vocab272727-onnx \ --decoder-thread-num 32 \ --io-thread-num 8 \ --port 10095 \ --certfile ../../../ssl_key/server.crt \ --keyfile ../../../ssl_key/server.key ``` After executing the above command, the real-time speech transcription service will be started. If the model is specified as a ModelScope model id, the following models will be automatically downloaded from ModelScope: [FSMN-VAD](https://www.modelscope.cn/models/damo/speech_fsmn_vad_zh-cn-16k-common-onnx/summary) [Paraformer-lagre](https://www.modelscope.cn/models/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-onnx/summary) [CT-Transformer](https://www.modelscope.cn/models/damo/punc_ct-transformer_zh-cn-common-vocab272727-onnx/summary) If you wish to deploy your fine-tuned model (e.g., 10epoch.pb), you need to manually rename the model to model.pb and replace the original model.pb in ModelScope. Then, specify the path as `model_dir`. ## Starting the client After completing the deployment of FunASR offline file transcription service on the server, you can test and use the service by following these steps. Currently, FunASR-bin supports multiple ways to start the client. The following are command-line examples based on python-client, c++-client, and custom client Websocket communication protocol: ### python-client ```shell python funasr_wss_client.py --host "127.0.0.1" --port 10095 --mode offline --audio_in "./data/wav.scp" --send_without_sleep --output_dir "./results" ``` Introduction to command parameters: ```text --host: the IP address of the server. It can be set to 127.0.0.1 for local testing. --port: the port number of the server listener. --audio_in: the audio input. Input can be a path to a wav file or a wav.scp file (a Kaldi-formatted wav list in which each line includes a wav_id followed by a tab and a wav_path). --output_dir: the path to the recognition result output. --ssl: whether to use SSL encryption. The default is to use SSL. --mode: offline mode. --hotword If am is hotword model, setting hotword: *.txt(one hotword perline) or hotwords seperate by space (could be: 阿里巴巴 达摩院) ``` ### c++-client ```shell . /funasr-wss-client --server-ip 127.0.0.1 --port 10095 --wav-path test.wav --thread-num 1 --is-ssl 1 ``` Introduction to command parameters: ```text --host: the IP address of the server. It can be set to 127.0.0.1 for local testing. --port: the port number of the server listener. --audio_in: the audio input. Input can be a path to a wav file or a wav.scp file (a Kaldi-formatted wav list in which each line includes a wav_id followed by a tab and a wav_path). --output_dir: the path to the recognition result output. --ssl: whether to use SSL encryption. The default is to use SSL. --mode: offline mode. --hotword If am is hotword model, setting hotword: *.txt(one hotword perline) or hotwords seperate by space (could be: 阿里巴巴 达摩院) ``` ### Custom client If you want to define your own client, see the [Websocket communication protocol](./websocket_protocol.md) ## How to customize service deployment The code for FunASR-runtime is open source. If the server and client cannot fully meet your needs, you can further develop them based on your own requirements: ### C++ client https://github.com/alibaba-damo-academy/FunASR/tree/main/funasr/runtime/websocket ### Python client https://github.com/alibaba-damo-academy/FunASR/tree/main/funasr/runtime/python/websocket ### C++ server #### VAD ```c++ // The use of the VAD model consists of two steps: FsmnVadInit and FsmnVadInfer: FUNASR_HANDLE vad_hanlde=FsmnVadInit(model_path, thread_num); // Where: model_path contains "model-dir" and "quantize", thread_num is the ONNX thread count; FUNASR_RESULT result=FsmnVadInfer(vad_hanlde, wav_file.c_str(), NULL, 16000); // Where: vad_hanlde is the return value of FunOfflineInit, wav_file is the path to the audio file, and sampling_rate is the sampling rate (default 16k). ``` See the usage example for details [docs](https://github.com/alibaba-damo-academy/FunASR/blob/main/funasr/runtime/onnxruntime/bin/funasr-onnx-offline-vad.cpp) #### ASR ```text // The use of the ASR model consists of two steps: FunOfflineInit and FunOfflineInfer: FUNASR_HANDLE asr_hanlde=FunOfflineInit(model_path, thread_num); // Where: model_path contains "model-dir" and "quantize", thread_num is the ONNX thread count; FUNASR_RESULT result=FunOfflineInfer(asr_hanlde, wav_file.c_str(), RASR_NONE, NULL, 16000); // Where: asr_hanlde is the return value of FunOfflineInit, wav_file is the path to the audio file, and sampling_rate is the sampling rate (default 16k). ``` See the usage example for details, [docs](https://github.com/alibaba-damo-academy/FunASR/blob/main/funasr/runtime/onnxruntime/bin/funasr-onnx-offline.cpp) #### PUNC ```text // The use of the PUNC model consists of two steps: CTTransformerInit and CTTransformerInfer: FUNASR_HANDLE punc_hanlde=CTTransformerInit(model_path, thread_num); // Where: model_path contains "model-dir" and "quantize", thread_num is the ONNX thread count; FUNASR_RESULT result=CTTransformerInfer(punc_hanlde, txt_str.c_str(), RASR_NONE, NULL); // Where: punc_hanlde is the return value of CTTransformerInit, txt_str is the text ``` See the usage example for details, [docs](https://github.com/alibaba-damo-academy/FunASR/blob/main/funasr/runtime/onnxruntime/bin/funasr-onnx-offline-punc.cpp)