#!/usr/bin/env python3 # -*- encoding: utf-8 -*- # Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved. # MIT License (https://opensource.org/licenses/MIT) from funasr import AutoModel chunk_size = [5, 10, 5] #[0, 10, 5] 600ms, [0, 8, 4] 480ms encoder_chunk_look_back = 0 #number of chunks to lookback for encoder self-attention decoder_chunk_look_back = 0 #number of encoder chunks to lookback for decoder cross-attention model = AutoModel(model="/Users/zhifu/Downloads/modelscope_models/speech_SCAMA_asr-zh-cn-16k-common-vocab8358-streaming", model_revision="v2.0.4") cache = {} res = model.generate(input="https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav", chunk_size=chunk_size, encoder_chunk_look_back=encoder_chunk_look_back, decoder_chunk_look_back=decoder_chunk_look_back, ) print(res) import soundfile import os wav_file = os.path.join(model.model_path, "example/asr_example.wav") speech, sample_rate = soundfile.read(wav_file) chunk_stride = chunk_size[1] * 960 # 600ms、480ms cache = {} total_chunk_num = int(len((speech)-1)/chunk_stride+1) for i in range(total_chunk_num): speech_chunk = speech[i*chunk_stride:(i+1)*chunk_stride] is_final = i == total_chunk_num - 1 res = model.generate(input=speech_chunk, cache=cache, is_final=is_final, chunk_size=chunk_size, encoder_chunk_look_back=encoder_chunk_look_back, decoder_chunk_look_back=decoder_chunk_look_back, ) print(res)