# Voice Activity Detection > **Note**: > The modelscope pipeline supports all the models in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/modelscope_models.html#pretrained-models-on-modelscope) to inference and finetune. Here we take the model of FSMN-VAD as example to demonstrate the usage. ## Inference ### Quick start #### [FSMN-VAD model](https://modelscope.cn/models/damo/speech_fsmn_vad_zh-cn-16k-common-pytorch/summary) ```python from modelscope.pipelines import pipeline from modelscope.utils.constant import Tasks inference_pipeline = pipeline( task=Tasks.voice_activity_detection, model='damo/speech_fsmn_vad_zh-cn-16k-common-pytorch', ) segments_result = inference_pipeline(audio_in='https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/vad_example.wav') print(segments_result) ``` #### [FSMN-VAD-online model](https://modelscope.cn/models/damo/speech_fsmn_vad_zh-cn-16k-common-pytorch/summary) ```python inference_pipeline = pipeline( task=Tasks.auto_speech_recognition, model='damo/speech_fsmn_vad_zh-cn-16k-common-pytorch', ) import soundfile speech, sample_rate = soundfile.read("example/asr_example.wav") param_dict = {"in_cache": dict(), "is_final": False} chunk_stride = 1600# 100ms # first chunk, 100ms speech_chunk = speech[0:chunk_stride] rec_result = inference_pipeline(audio_in=speech_chunk, param_dict=param_dict) print(rec_result) # next chunk, 480ms speech_chunk = speech[chunk_stride:chunk_stride+chunk_stride] rec_result = inference_pipeline(audio_in=speech_chunk, param_dict=param_dict) print(rec_result) ``` Full code of demo, please ref to [demo](https://github.com/alibaba-damo-academy/FunASR/discussions/236) ### API-reference #### Define pipeline - `task`: `Tasks.voice_activity_detection` - `model`: model name in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/modelscope_models.html#pretrained-models-on-modelscope), or model path in local disk - `ngpu`: `1` (Default), decoding on GPU. If ngpu=0, decoding on CPU - `ncpu`: `1` (Default), sets the number of threads used for intraop parallelism on CPU - `output_dir`: `None` (Default), the output path of results if set - `batch_size`: `1` (Default), batch size when decoding #### Infer pipeline - `audio_in`: the input to decode, which could be: - wav_path, `e.g.`: asr_example.wav, - pcm_path, `e.g.`: asr_example.pcm, - audio bytes stream, `e.g.`: bytes data from a microphone - audio sample point,`e.g.`: `audio, rate = soundfile.read("asr_example_zh.wav")`, the dtype is numpy.ndarray or torch.Tensor - wav.scp, kaldi style wav list (`wav_id \t wav_path`), `e.g.`: ```text asr_example1 ./audios/asr_example1.wav asr_example2 ./audios/asr_example2.wav ``` In this case of `wav.scp` input, `output_dir` must be set to save the output results - `audio_fs`: audio sampling rate, only set when audio_in is pcm audio - `output_dir`: None (Default), the output path of results if set ### Inference with multi-thread CPUs or multi GPUs FunASR also offer recipes [egs_modelscope/vad/TEMPLATE/infer.sh](https://github.com/alibaba-damo-academy/FunASR/blob/main/egs_modelscope/vad/TEMPLATE/infer.sh) to decode with multi-thread CPUs, or multi GPUs. - Setting parameters in `infer.sh` - `model`: model name in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/modelscope_models.html#pretrained-models-on-modelscope), or model path in local disk - `data_dir`: the dataset dir needs to include `wav.scp` - `output_dir`: output dir of the recognition results - `batch_size`: `64` (Default), batch size of inference on gpu - `gpu_inference`: `true` (Default), whether to perform gpu decoding, set false for CPU inference - `gpuid_list`: `0,1` (Default), which gpu_ids are used to infer - `njob`: only used for CPU inference (`gpu_inference`=`false`), `64` (Default), the number of jobs for CPU decoding - `checkpoint_dir`: only used for infer finetuned models, the path dir of finetuned models - `checkpoint_name`: only used for infer finetuned models, `valid.cer_ctc.ave.pb` (Default), which checkpoint is used to infer - Decode with multi GPUs: ```shell bash infer.sh \ --model "damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch" \ --data_dir "./data/test" \ --output_dir "./results" \ --batch_size 1 \ --gpu_inference true \ --gpuid_list "0,1" ``` - Decode with multi-thread CPUs: ```shell bash infer.sh \ --model "damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch" \ --data_dir "./data/test" \ --output_dir "./results" \ --gpu_inference false \ --njob 1 ``` ## Finetune with pipeline ### Quick start ### Finetune with your data ## Inference with your finetuned model