# Speaker Verification > **Note**: > The modelscope pipeline supports all the models in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/modelscope_models.html#pretrained-models-on-modelscope) to inference and finetine. Here we take the model of xvector_sv as example to demonstrate the usage. ## Inference with pipeline ### Quick start #### Speaker verification ```python from modelscope.pipelines import pipeline from modelscope.utils.constant import Tasks inference_sv_pipline = pipeline( task=Tasks.speaker_verification, model='damo/speech_xvector_sv-zh-cn-cnceleb-16k-spk3465-pytorch' ) # The same speaker rec_result = inference_sv_pipline(audio_in=( 'https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/sv_example_enroll.wav', 'https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/sv_example_same.wav')) print("Similarity", rec_result["scores"]) # Different speakers rec_result = inference_sv_pipline(audio_in=( 'https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/sv_example_enroll.wav', 'https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/sv_example_different.wav')) print("Similarity", rec_result["scores"]) ``` #### Speaker embedding extraction ```python from modelscope.pipelines import pipeline from modelscope.utils.constant import Tasks # Define extraction pipeline inference_sv_pipline = pipeline( task=Tasks.speaker_verification, model='damo/speech_xvector_sv-zh-cn-cnceleb-16k-spk3465-pytorch' ) # Extract speaker embedding rec_result = inference_sv_pipline( audio_in='https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/sv_example_enroll.wav') speaker_embedding = rec_result["spk_embedding"] ``` Full code of demo, please ref to [infer.py](https://github.com/alibaba-damo-academy/FunASR/blob/main/egs_modelscope/speaker_verification/speech_xvector_sv-zh-cn-cnceleb-16k-spk3465-pytorch/infer.py). ### API-reference #### Define pipeline - `task`: `Tasks.speaker_verification` - `model`: model name in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/modelscope_models.html#pretrained-models-on-modelscope), or model path in local disk - `ngpu`: `1` (Default), decoding on GPU. If ngpu=0, decoding on CPU - `output_dir`: `None` (Default), the output path of results if set - `batch_size`: `1` (Default), batch size when decoding - `sv_threshold`: `0.9465` (Default), the similarity threshold to determine whether utterances belong to the same speaker (it should be in (0, 1)) #### Infer pipeline for speaker embedding extraction - `audio_in`: the input to process, which could be: - url (str): `e.g.`: https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/sv_example_enroll.wav - local_path: `e.g.`: path/to/a.wav - wav.scp: `e.g.`: path/to/wav1.scp ```text wav.scp test1 path/to/enroll1.wav test2 path/to/enroll2.wav ``` - bytes: `e.g.`: raw bytes data from a microphone - fbank1.scp,speech,kaldi_ark: `e.g.`: extracted 80-dimensional fbank features with kaldi toolkits. #### Infer pipeline for speaker verification - `audio_in`: the input to process, which could be: - Tuple(url1, url2): `e.g.`: (https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/sv_example_enroll.wav, https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/sv_example_different.wav) - Tuple(local_path1, local_path2): `e.g.`: (path/to/a.wav, path/to/b.wav) - Tuple(wav1.scp, wav2.scp): `e.g.`: (path/to/wav1.scp, path/to/wav2.scp) ```text wav1.scp test1 path/to/enroll1.wav test2 path/to/enroll2.wav wav2.scp test1 path/to/same1.wav test2 path/to/diff2.wav ``` - Tuple(bytes, bytes): `e.g.`: raw bytes data from a microphone - Tuple("fbank1.scp,speech,kaldi_ark", "fbank2.scp,speech,kaldi_ark"): `e.g.`: extracted 80-dimensional fbank features with kaldi toolkits. ### Inference with you data Use wav1.scp or fbank.scp to organize your own data to extract speaker embeddings or perform speaker verification. In this case, the `output_dir` should be set to save all the embeddings or scores. ### Inference with multi-threads on CPU You can inference with multi-threads on CPU as follow steps: 1. Set `ngpu=0` while defining the pipeline in `infer.py`. 2. Split wav.scp to several files `e.g.: 4` ```shell split -l $((`wc -l < wav.scp`/4+1)) --numeric-suffixes wav.scp splits/wav.scp. ``` 3. Start to extract embeddings ```shell for wav_scp in `ls splits/wav.scp.*`; do infer.py ${wav_scp} outputs/$((basename ${wav_scp})) done ``` 4. The embeddings will be saved in `outputs/*` ### Inference with multi GPU Similar to inference on CPU, the difference are as follows: Step 1. Set `ngpu=1` while defining the pipeline in `infer.py`. Step 3. specify the gpu device with `CUDA_VISIBLE_DEVICES`: ```shell for wav_scp in `ls splits/wav.scp.*`; do CUDA_VISIBLE_DEVICES=1 infer.py ${wav_scp} outputs/$((basename ${wav_scp})) done ```