import torch from torch.nn import functional as F from funasr.models.encoder.abs_encoder import AbsEncoder from typing import Tuple class BasicLayer(torch.nn.Module): def __init__(self, in_filters: int, filters: int, stride: int, bn_momentum: float = 0.5): super().__init__() self.stride = stride self.in_filters = in_filters self.filters = filters self.bn1 = torch.nn.BatchNorm2d(in_filters, eps=1e-3, momentum=bn_momentum, affine=True) self.relu1 = torch.nn.ReLU() self.conv1 = torch.nn.Conv2d(in_filters, filters, 3, stride, bias=False) self.bn2 = torch.nn.BatchNorm2d(filters, eps=1e-3, momentum=bn_momentum, affine=True) self.relu2 = torch.nn.ReLU() self.conv2 = torch.nn.Conv2d(filters, filters, 3, 1, bias=False) if in_filters != filters or stride > 1: self.conv_sc = torch.nn.Conv2d(in_filters, filters, 1, stride, bias=False) self.bn_sc = torch.nn.BatchNorm2d(filters, eps=1e-3, momentum=bn_momentum, affine=True) def proper_padding(self, x, stride): # align padding mode to tf.layers.conv2d with padding_mod="same" if stride == 1: return F.pad(x, (1, 1, 1, 1), "constant", 0) elif stride == 2: h, w = x.size(2), x.size(3) # (left, right, top, bottom) return F.pad(x, (w % 2, 1, h % 2, 1), "constant", 0) def forward(self, xs_pad, ilens): identity = xs_pad if self.in_filters != self.filters or self.stride > 1: identity = self.conv_sc(identity) identity = self.bn_sc(identity) xs_pad = self.relu1(self.bn1(xs_pad)) xs_pad = self.proper_padding(xs_pad, self.stride) xs_pad = self.conv1(xs_pad) xs_pad = self.relu2(self.bn2(xs_pad)) xs_pad = self.proper_padding(xs_pad, 1) xs_pad = self.conv2(xs_pad) if self.stride == 2: ilens = (ilens + 1) // self.stride return xs_pad + identity, ilens class BasicBlock(torch.nn.Module): def __init__(self, in_filters, filters, num_layer, stride, bn_momentum=0.5): super().__init__() self.num_layer = num_layer for i in range(num_layer): layer = BasicLayer(in_filters if i == 0 else filters, filters, stride if i == 0 else 1, bn_momentum) self.add_module("layer_{}".format(i), layer) def forward(self, xs_pad, ilens): for i in range(self.num_layer): xs_pad, ilens = self._modules["layer_{}".format(i)](xs_pad, ilens) return xs_pad, ilens class ResNet34(AbsEncoder): def __init__( self, input_size, use_head_conv=True, batchnorm_momentum=0.5, use_head_maxpool=False, num_nodes_pooling_layer=256, layers_in_block=(3, 4, 6, 3), filters_in_block=(32, 64, 128, 256), ): super(ResNet34, self).__init__() self.use_head_conv = use_head_conv self.use_head_maxpool = use_head_maxpool self.num_nodes_pooling_layer = num_nodes_pooling_layer self.layers_in_block = layers_in_block self.filters_in_block = filters_in_block self.input_size = input_size pre_filters = filters_in_block[0] if use_head_conv: self.pre_conv = torch.nn.Conv2d(1, pre_filters, 3, 1, 1, bias=False, padding_mode="zeros") self.pre_conv_bn = torch.nn.BatchNorm2d(pre_filters, eps=1e-3, momentum=batchnorm_momentum) if use_head_maxpool: self.head_maxpool = torch.nn.MaxPool2d(3, 1, padding=1) for i in range(len(layers_in_block)): if i == 0: in_filters = pre_filters if self.use_head_conv else 1 else: in_filters = filters_in_block[i-1] block = BasicBlock(in_filters, filters=filters_in_block[i], num_layer=layers_in_block[i], stride=1 if i == 0 else 2, bn_momentum=batchnorm_momentum) self.add_module("block_{}".format(i), block) self.resnet0_dense = torch.nn.Conv2d(filters_in_block[-1], num_nodes_pooling_layer, 1) self.resnet0_bn = torch.nn.BatchNorm2d(num_nodes_pooling_layer, eps=1e-3, momentum=batchnorm_momentum) def output_size(self) -> int: return self.num_nodes_pooling_layer def forward(self, xs_pad: torch.Tensor, ilens: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: features = xs_pad assert features.size(-1) == self.input_size, \ "Dimension of features {} doesn't match the input_size {}.".format(features.size(-1), self.input_size) features = torch.unsqueeze(features, dim=1) if self.use_head_conv: features = self.pre_conv(features) features = self.pre_conv_bn(features) features = F.relu(features) if self.use_head_maxpool: features = self.head_maxpool(features) resnet_outs, resnet_out_lens = features, ilens for i in range(len(self.layers_in_block)): block = self._modules["block_{}".format(i)] resnet_outs, resnet_out_lens = block(resnet_outs, resnet_out_lens) features = self.resnet0_dense(resnet_outs) features = F.relu(features) features = self.resnet0_bn(features) return features, ilens // 8