#!/usr/bin/env python3 # 2021, University of Stuttgart; Pavel Denisov # Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) """Hugging Face Transformers PostEncoder.""" from funasr.modules.nets_utils import make_pad_mask from funasr.models.postencoder.abs_postencoder import AbsPostEncoder from typeguard import check_argument_types from typing import Tuple import copy import logging import torch try: from transformers import AutoModel is_transformers_available = True except ImportError: is_transformers_available = False class HuggingFaceTransformersPostEncoder(AbsPostEncoder): """Hugging Face Transformers PostEncoder.""" def __init__( self, input_size: int, model_name_or_path: str, ): """Initialize the module.""" assert check_argument_types() super().__init__() if not is_transformers_available: raise ImportError( "`transformers` is not available. Please install it via `pip install" " transformers` or `cd /path/to/espnet/tools && . ./activate_python.sh" " && ./installers/install_transformers.sh`." ) model = AutoModel.from_pretrained(model_name_or_path) if hasattr(model, "encoder"): self.transformer = model.encoder else: self.transformer = model if hasattr(self.transformer, "embed_tokens"): del self.transformer.embed_tokens if hasattr(self.transformer, "wte"): del self.transformer.wte if hasattr(self.transformer, "word_embedding"): del self.transformer.word_embedding self.pretrained_params = copy.deepcopy(self.transformer.state_dict()) if ( self.transformer.config.is_encoder_decoder or self.transformer.config.model_type in ["xlnet", "t5"] ): self.use_inputs_embeds = True self.extend_attention_mask = False elif self.transformer.config.model_type == "gpt2": self.use_inputs_embeds = True self.extend_attention_mask = True else: self.use_inputs_embeds = False self.extend_attention_mask = True self.linear_in = torch.nn.Linear( input_size, self.transformer.config.hidden_size ) def forward( self, input: torch.Tensor, input_lengths: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor]: """Forward.""" input = self.linear_in(input) args = {"return_dict": True} mask = (~make_pad_mask(input_lengths)).to(input.device).float() if self.extend_attention_mask: args["attention_mask"] = _extend_attention_mask(mask) else: args["attention_mask"] = mask if self.use_inputs_embeds: args["inputs_embeds"] = input else: args["hidden_states"] = input if self.transformer.config.model_type == "mpnet": args["head_mask"] = [None for _ in self.transformer.layer] output = self.transformer(**args).last_hidden_state return output, input_lengths def reload_pretrained_parameters(self): self.transformer.load_state_dict(self.pretrained_params) logging.info("Pretrained Transformers model parameters reloaded!") def output_size(self) -> int: """Get the output size.""" return self.transformer.config.hidden_size def _extend_attention_mask(mask: torch.Tensor) -> torch.Tensor: mask = mask[:, None, None, :] mask = (1.0 - mask) * -10000.0 return mask