#!/usr/bin/env bash . ./path.sh || exit 1; # machines configuration CUDA_VISIBLE_DEVICES="0,1" gpu_num=2 count=1 gpu_inference=true # Whether to perform gpu decoding, set false for cpu decoding # for gpu decoding, inference_nj=ngpu*njob; for cpu decoding, inference_nj=njob njob=1 train_cmd=utils/run.pl infer_cmd=utils/run.pl # general configuration feats_dir="../DATA" #feature output dictionary, for large data exp_dir="." lang=zh dumpdir=dump/fbank feats_type=fbank token_type=char scp=feats.scp type=kaldi_ark stage=0 stop_stage=4 # feature configuration feats_dim=80 sample_frequency=16000 nj=32 speed_perturb="0.9,1.0,1.1" # data data_aishell= # exp tag tag="" . utils/parse_options.sh || exit 1; # Set bash to 'debug' mode, it will exit on : # -e 'error', -u 'undefined variable', -o ... 'error in pipeline', -x 'print commands', set -e set -u set -o pipefail train_set=train valid_set=dev test_sets="dev test" asr_config=conf/train_asr_paraformer_conformer_12e_6d_2048_256.yaml model_dir="baseline_$(basename "${asr_config}" .yaml)_${feats_type}_${lang}_${token_type}_${tag}" inference_config=conf/decode_asr_transformer_noctc_1best.yaml inference_asr_model=valid.acc.ave_10best.pth # you can set gpu num for decoding here gpuid_list=$CUDA_VISIBLE_DEVICES # set gpus for decoding, the same as training stage by default ngpu=$(echo $gpuid_list | awk -F "," '{print NF}') if ${gpu_inference}; then inference_nj=$[${ngpu}*${njob}] _ngpu=1 else inference_nj=$njob _ngpu=0 fi if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then echo "stage 0: Data preparation" # Data preparation local/aishell_data_prep.sh ${data_aishell}/data_aishell/wav ${data_aishell}/data_aishell/transcript ${feats_dir} for x in train dev test; do cp ${feats_dir}/data/${x}/text ${feats_dir}/data/${x}/text.org paste -d " " <(cut -f 1 -d" " ${feats_dir}/data/${x}/text.org) <(cut -f 2- -d" " ${feats_dir}/data/${x}/text.org | tr -d " ") \ > ${feats_dir}/data/${x}/text utils/text2token.py -n 1 -s 1 ${feats_dir}/data/${x}/text > ${feats_dir}/data/${x}/text.org mv ${feats_dir}/data/${x}/text.org ${feats_dir}/data/${x}/text done fi feat_train_dir=${feats_dir}/${dumpdir}/train; mkdir -p ${feat_train_dir} feat_dev_dir=${feats_dir}/${dumpdir}/dev; mkdir -p ${feat_dev_dir} feat_test_dir=${feats_dir}/${dumpdir}/test; mkdir -p ${feat_test_dir} if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then echo "stage 1: Feature Generation" # compute fbank features fbankdir=${feats_dir}/fbank utils/compute_fbank.sh --cmd "$train_cmd" --nj $nj --feats_dim ${feats_dim} --sample_frequency ${sample_frequency} --speed_perturb ${speed_perturb} \ ${feats_dir}/data/train ${exp_dir}/exp/make_fbank/train ${fbankdir}/train utils/fix_data_feat.sh ${fbankdir}/train utils/compute_fbank.sh --cmd "$train_cmd" --nj $nj --feats_dim ${feats_dim} --sample_frequency ${sample_frequency} \ ${feats_dir}/data/dev ${exp_dir}/exp/make_fbank/dev ${fbankdir}/dev utils/fix_data_feat.sh ${fbankdir}/dev utils/compute_fbank.sh --cmd "$train_cmd" --nj $nj --feats_dim ${feats_dim} --sample_frequency ${sample_frequency} \ ${feats_dir}/data/test ${exp_dir}/exp/make_fbank/test ${fbankdir}/test utils/fix_data_feat.sh ${fbankdir}/test # compute global cmvn utils/compute_cmvn.sh --cmd "$train_cmd" --nj $nj --feats_dim ${feats_dim} \ ${fbankdir}/train ${exp_dir}/exp/make_fbank/train # apply cmvn utils/apply_cmvn.sh --cmd "$train_cmd" --nj $nj \ ${fbankdir}/train ${fbankdir}/train/cmvn.json ${exp_dir}/exp/make_fbank/train ${feat_train_dir} utils/apply_cmvn.sh --cmd "$train_cmd" --nj $nj \ ${fbankdir}/dev ${fbankdir}/train/cmvn.json ${exp_dir}/exp/make_fbank/dev ${feat_dev_dir} utils/apply_cmvn.sh --cmd "$train_cmd" --nj $nj \ ${fbankdir}/test ${fbankdir}/train/cmvn.json ${exp_dir}/exp/make_fbank/test ${feat_test_dir} cp ${fbankdir}/train/text ${fbankdir}/train/speech_shape ${fbankdir}/train/text_shape ${feat_train_dir} cp ${fbankdir}/dev/text ${fbankdir}/dev/speech_shape ${fbankdir}/dev/text_shape ${feat_dev_dir} cp ${fbankdir}/test/text ${fbankdir}/test/speech_shape ${fbankdir}/test/text_shape ${feat_test_dir} utils/fix_data_feat.sh ${feat_train_dir} utils/fix_data_feat.sh ${feat_dev_dir} utils/fix_data_feat.sh ${feat_test_dir} #generate ark list utils/gen_ark_list.sh --cmd "$train_cmd" --nj $nj ${feat_train_dir} ${fbankdir}/train ${feat_train_dir} utils/gen_ark_list.sh --cmd "$train_cmd" --nj $nj ${feat_dev_dir} ${fbankdir}/dev ${feat_dev_dir} fi token_list=${feats_dir}/data/${lang}_token_list/char/tokens.txt echo "dictionary: ${token_list}" if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then echo "stage 2: Dictionary Preparation" mkdir -p ${feats_dir}/data/${lang}_token_list/char/ echo "make a dictionary" echo "" > ${token_list} echo "" >> ${token_list} echo "" >> ${token_list} utils/text2token.py -s 1 -n 1 --space "" ${feats_dir}/data/train/text | cut -f 2- -d" " | tr " " "\n" \ | sort | uniq | grep -a -v -e '^\s*$' | awk '{print $0}' >> ${token_list} num_token=$(cat ${token_list} | wc -l) echo "" >> ${token_list} vocab_size=$(cat ${token_list} | wc -l) awk -v v=,${vocab_size} '{print $0v}' ${feat_train_dir}/text_shape > ${feat_train_dir}/text_shape.char awk -v v=,${vocab_size} '{print $0v}' ${feat_dev_dir}/text_shape > ${feat_dev_dir}/text_shape.char mkdir -p ${feats_dir}/asr_stats_fbank_zh_char/train mkdir -p ${feats_dir}/asr_stats_fbank_zh_char/dev cp ${feat_train_dir}/speech_shape ${feat_train_dir}/text_shape ${feat_train_dir}/text_shape.char ${feats_dir}/asr_stats_fbank_zh_char/train cp ${feat_dev_dir}/speech_shape ${feat_dev_dir}/text_shape ${feat_dev_dir}/text_shape.char ${feats_dir}/asr_stats_fbank_zh_char/dev fi # Training Stage world_size=$gpu_num # run on one machine if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then echo "stage 3: Training" mkdir -p ${exp_dir}/exp/${model_dir} mkdir -p ${exp_dir}/exp/${model_dir}/log INIT_FILE=${exp_dir}/exp/${model_dir}/ddp_init if [ -f $INIT_FILE ];then rm -f $INIT_FILE fi init_method=file://$(readlink -f $INIT_FILE) echo "$0: init method is $init_method" for ((i = 0; i < $gpu_num; ++i)); do { rank=$i local_rank=$i gpu_id=$(echo $CUDA_VISIBLE_DEVICES | cut -d',' -f$[$i+1]) asr_train_paraformer.py \ --gpu_id $gpu_id \ --use_preprocessor true \ --token_type char \ --token_list $token_list \ --train_data_path_and_name_and_type ${feats_dir}/${dumpdir}/${train_set}/${scp},speech,${type} \ --train_data_path_and_name_and_type ${feats_dir}/${dumpdir}/${train_set}/text,text,text \ --train_shape_file ${feats_dir}/asr_stats_fbank_zh_char/${train_set}/speech_shape \ --train_shape_file ${feats_dir}/asr_stats_fbank_zh_char/${train_set}/text_shape.char \ --valid_data_path_and_name_and_type ${feats_dir}/${dumpdir}/${valid_set}/${scp},speech,${type} \ --valid_data_path_and_name_and_type ${feats_dir}/${dumpdir}/${valid_set}/text,text,text \ --valid_shape_file ${feats_dir}/asr_stats_fbank_zh_char/${valid_set}/speech_shape \ --valid_shape_file ${feats_dir}/asr_stats_fbank_zh_char/${valid_set}/text_shape.char \ --resume true \ --output_dir ${exp_dir}/exp/${model_dir} \ --config $asr_config \ --input_size $feats_dim \ --ngpu $gpu_num \ --num_worker_count $count \ --multiprocessing_distributed true \ --dist_init_method $init_method \ --dist_world_size $world_size \ --dist_rank $rank \ --local_rank $local_rank 1> ${exp_dir}/exp/${model_dir}/log/train.log.$i 2>&1 } & done wait fi # Testing Stage if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then echo "stage 4: Inference" for dset in ${test_sets}; do asr_exp=${exp_dir}/exp/${model_dir} inference_tag="$(basename "${inference_config}" .yaml)" _dir="${asr_exp}/${inference_tag}/${inference_asr_model}/${dset}" _logdir="${_dir}/logdir" if [ -d ${_dir} ]; then echo "${_dir} is already exists. if you want to decode again, please delete this dir first." exit 0 fi mkdir -p "${_logdir}" _data="${feats_dir}/${dumpdir}/${dset}" key_file=${_data}/${scp} num_scp_file="$(<${key_file} wc -l)" _nj=$([ $inference_nj -le $num_scp_file ] && echo "$inference_nj" || echo "$num_scp_file") split_scps= for n in $(seq "${_nj}"); do split_scps+=" ${_logdir}/keys.${n}.scp" done # shellcheck disable=SC2086 utils/split_scp.pl "${key_file}" ${split_scps} _opts= if [ -n "${inference_config}" ]; then _opts+="--config ${inference_config} " fi ${infer_cmd} --gpu "${_ngpu}" --max-jobs-run "${_nj}" JOB=1:"${_nj}" "${_logdir}"/asr_inference.JOB.log \ python -m funasr.bin.asr_inference_launch \ --batch_size 100 \ --ngpu "${_ngpu}" \ --njob ${njob} \ --gpuid_list ${gpuid_list} \ --data_path_and_name_and_type "${_data}/${scp},speech,${type}" \ --key_file "${_logdir}"/keys.JOB.scp \ --asr_train_config "${asr_exp}"/config.yaml \ --asr_model_file "${asr_exp}"/"${inference_asr_model}" \ --output_dir "${_logdir}"/output.JOB \ --mode paraformer \ ${_opts} for f in token token_int score text; do if [ -f "${_logdir}/output.1/1best_recog/${f}" ]; then for i in $(seq "${_nj}"); do cat "${_logdir}/output.${i}/1best_recog/${f}" done | sort -k1 >"${_dir}/${f}" fi done python utils/proce_text.py ${_dir}/text ${_dir}/text.proc python utils/proce_text.py ${_data}/text ${_data}/text.proc python utils/compute_wer.py ${_data}/text.proc ${_dir}/text.proc ${_dir}/text.cer tail -n 3 ${_dir}/text.cer > ${_dir}/text.cer.txt cat ${_dir}/text.cer.txt done fi